

CTL++: Evaluating Generalization on Never-Seen Compositional Patterns of Known Functions, and Compatibility of Neural Representations

Róbert Csordás robert@idsia.ch

Kazuki Irie kazuki@idsia.ch

Jürgen Schmidhuber juergen@idsia.ch

Systematic generalization

• Ability to perform well on **systematically different** inputs, governed by the same rules

- Systematicity is the ability to generalize to unseen compositions of known functions.
- Existing methods
 - 1 Neural networks with supervised learning usually fail
 - 2 Meta-learning: helps a bit, but far from ideal
 - 3 Neuro-symbolic hybrids: work well, but task-specific
 - Goal: a model that learns from data but generalizes well
- Question: what is the simplest setting that shows these unwanted effects and what are the reasons for bad generalization?

We propose a minimal dataset for testing systematicity and analyse why the networks fail.

The CTL dataset

- Compositional Table Lookup
- Introduced in Memorize or generalize? Searching for a compositional RNN in a haystack, from Liška et al. 2018
 - Originally used in IID setting
- Input symbols: 3-bit binary strings (single symbol)
- Single argument bijective functions: letters
- Example: cba3 Interpretation: $a(3) = 6 \rightarrow cb6$; $b(6)=2 \rightarrow c2...$

Extension for testing systematicity

- Restrict which functions are composed together
 - Divide functions in groups (denoted by G)
 - Restrict which functions from which group can follow each other
 - Use the opposite restrictions for training and testing

This creates compositions for testing which are not seen during the training

- Multiple varaints are possible:
 - 1 Variant "A" (Alternating)
 - Alternate G_a and G_b for training
 - Sample consecutively from G_a or G_b for testing
 - Training: $G_a G_b G_a G_b \dots$ Testing: $G_a G_a \dots$ or $G_b G_b \dots$

- 2 Variant "R" (Repeating)
 - The opposite of the "A" variant
 - Training: $G_a G_a G_a G_a ...$ Testing: $G_a G_b ...$
- 3 Variant "S" (Staged)
 - Divide paths in two stages: G_{a1} , G_{b1} and G_{a2} , G_{b2}
 - Sample a function from the same group in consecutive stages
 - Or from the overlapping group G_o in the second stage
 - Transitions between different groups belonging to stage 1 and stage 2 are restricted to certain symbols only.

• Training: $G_{a1} G_{a2} G_{b1} G_o G_{b1} G_{b2} \dots$ Testing: $G_{a1} G_{b2} \dots$

Results

1,2 Variant "A" (Alternating) and "R" (Repeating)

Model	Dataset	Accuracy	
		IID	OOD
Bi-LSTM	A	1.00 ± 0.00	0.95 ± 0.03
	R	1.00 ± 0.00	1.00 ± 0.00
Transformer	A	1.00 ± 0.00	0.21 ± 0.09
	R	1.00 ± 0.00	0.75 ± 0.25
NDR	A	1.00 ± 0.00	0.34 ± 0.26
	R	1.00 ± 0.01	0.75 ± 0.27

- Transformer variants perform poorly
- LSTM works well
- 3 Variant "S" (Staged)

Accuracy of NDR in function of overlapping funtions and symbols

- Suprisingly large over overlap is needed to learn the equivalence between symbols
- Results are very similar for Transformers and LSTM as well

Analysis

- We analyzed NDR on the variant "R" (Repeating)
 - 1 Take all symbol/function pairs that result in the same output symbol
 - Take the representation of the output symbol from **before** the final classification layer
 - 3 Calculate the cosine distance between them

- We observe clustering according to the group of the function
 - Some functions learn two different input representations
 - This makes certain functions not compatible with each other, because of unseen input representation

Conclusion

- Systematicity is hard even in very simple cases
- Naively trained models learn multiple representations for the same symbol
 - Task requires the model to understand symbol representations produced by various functions
 - But not enough for learning a single representation shared across all functions.
- We hope that our diagnostic dataset will help in developing models with improved systematicity