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Systematic generalization

® Ability to perform well on systematically different inputs, governed by

the same rules
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9 Focus of this work y See NDR: Csordas et al, 2022

Systematicity is the ability to generalize to unseen compositions of
known functions.

Existing methods

1 Neural networks with supervised learning - usually fail
2 Meta-learning: helps a bit, but far from ideal

3 Neuro-symbolic hybrids: work well, but task-specific

Goal: a model that learns from data but generalizes well

Question: what is the simplest setting that shows these unwanted
effects and what are the reasons for bad generalization?

We propose a minimal dataset for testing systematicity and
analyse why the networks fail.

The CTL dataset

® Compositional Table Lookup

® Introducedin Memorize or generalize? Searching for a
compositional RNN in a haystack, from Liska et al. 2018

® Oiriginally used in lID setting
Input symbols: 3-bit binary strings (single symbol)
Single argument bijective functions: letters

Example: Interpretation: a(3) =6— cb 6; b(6)=2— c2...

Extension for testing systematicity

Restrict which functions are composed together

® Divide functions in groups (denoted by G)

® Restrict which functions from which group can follow each other
® Use the opposite restrictions for training and testing

This creates compositions for testing which are not seen
during the training

Multiple varaints are possible:

1 Variant "A" (Alternating)
® Alternate G, and G, for training

® Sample consecutively from G, or G, for testing
® Training: G, G, G, G,... Testing:G,G,..or G, G, ...
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2 Variant "R" (Repeating)

® Theopposite of the "A" variant
® Training:G,G, G,G,.. Testing:G,G, ..
3 Variant"S" (Staged)
® Divide pathsintwo stages: G4, G,; and G,,, G,
® Sample afunction from the same group in consecutive stages
® Orfrom the overlapping group G, in the second stage

® Transitions between different groups belonging to stage 1 and
stage 2 arerestricted to certain symbols only.
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® Training:G,,G,, G,1G,G,;G,,.. Testing:G,,G,, ..
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1,2 Variant "A" (Alternating) and "R" (Repeating)
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Model Dataset

Bi-LSTM

Transformer

NDR

® T[ransformer variants perform poorly
® L|LSTM works well
Variant "S" (Staged)

Accuracy of NDR in function of overlapping funtions and symbols
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® Suprisingly large over overlap is needed to learn the
equivalence between symbols

® Results are very similar for Transformers and LSTM as well

® \We analyzed NDR on the variant "R" (Repeating)

1 Take all symbol/function pairs that result in the same
output symbol

2 Take the representation of the output symbol from before
the final classification layer

No. of functions

3 Calculate the cosine distance between them
Symbols with representation incompability (left) and with perfect compatibility (right)
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® \Weobserve clustering according to the group of the function
® Some functions learn two different input representations

® This makes certain functions not compatible with each other,
because of unseen input representation

Conclusion

® Systematicityis hard even in very simple cases

® Naively trained models learn multiple representations for the same
symbo

® Taskrequiresthe model tounderstand symbol representations
produced by various functions

® But not enough for learning a single representation shared across
all functions.

We hope that our diagnostic dataset will help in developing models
with improved systematicity
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