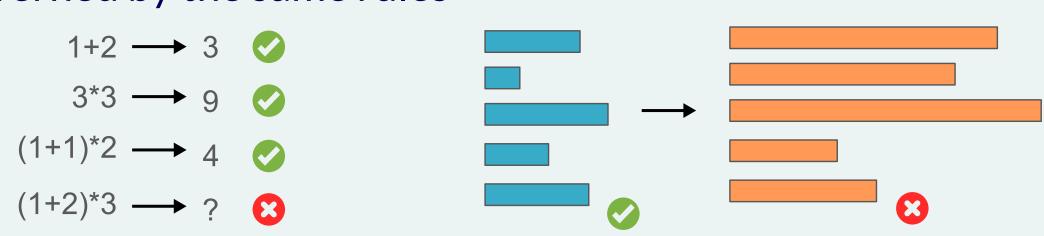


The Devil is in the Detail: Simple Tricks Improve Systematic

Generalization of Transformers

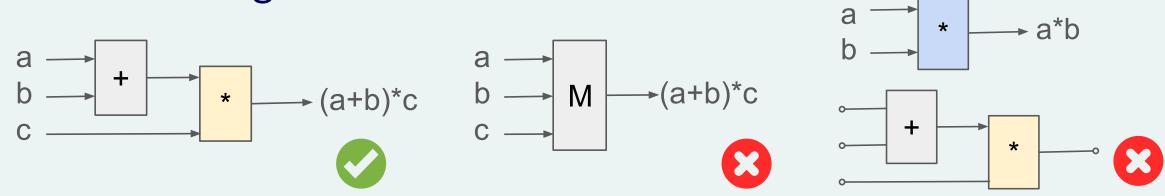

Róbert Csordás robert@idsia.ch

Kazuki Irie kazuki@idsia.ch

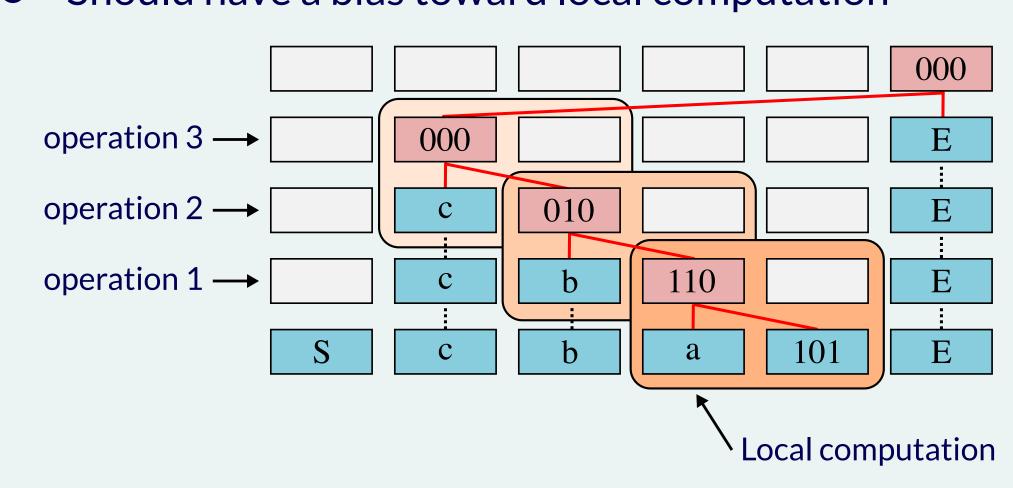
Jürgen Schmidhuber juergen@idsia.ch

Systematic generalization

• Ability to perform well well on **systematically different** inputs, governed by the same rules


- Existing methods
 - 1 Neural networks with supervised learning usually fail
 - 2 Meta-learning: helps a bit, but far from ideal
 - 3 Neuro-symbolic hybrids: work well, but task specific

Hypotheses


- The transformer achitecture looks well-suited for the algorithmic tasks usually used to test systematic generalization (but they are typically reported to fail in such tasks)
- The default configurations used are sub-optimal: they are typically just taken from the standard machine translation task
- There are existing augmentations of Transformers relevant for systematic generalization which are underexplored!

Architectural changes for sys. gen.

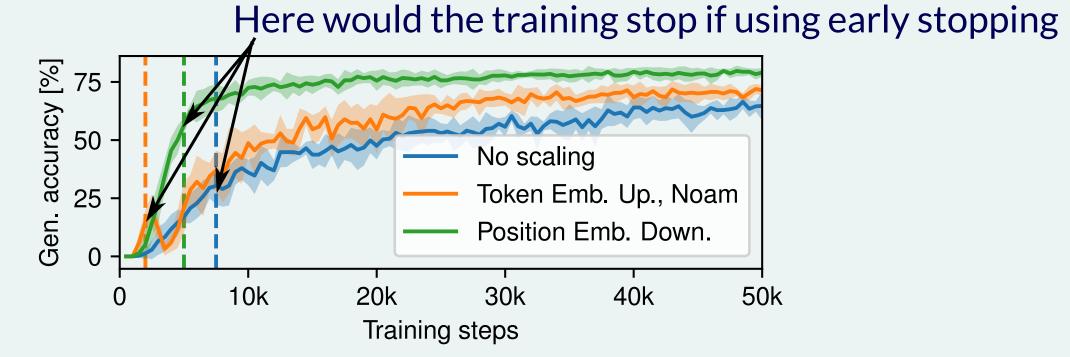
1 Decomposing the problem to elementary, reusable components should boost generalization

- In Transformers, the output of an operation is available to only to the successive layers. Since operations should be composable in any order, layers should be shared.
- This should help systematicity
- 2 Long compositions are often made of multiple local compositions
 - Should have a bias toward local computation

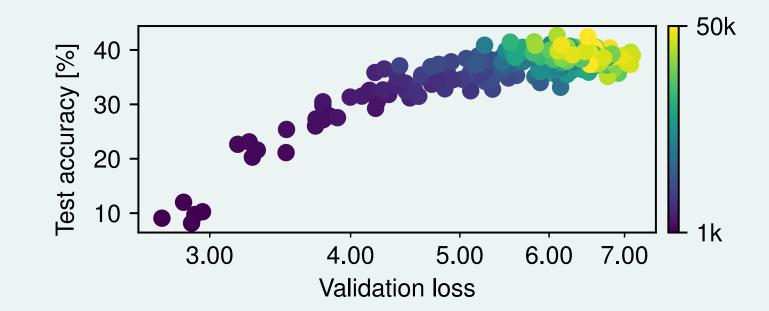
The EOS decision problem

- Described by Newman et al. (2020)
- The performance of neural networks is better if trained without the EOS token, even compared to oracle length-evaluation
- Universal Transformers with relative positional encoding generalize well without any tricks

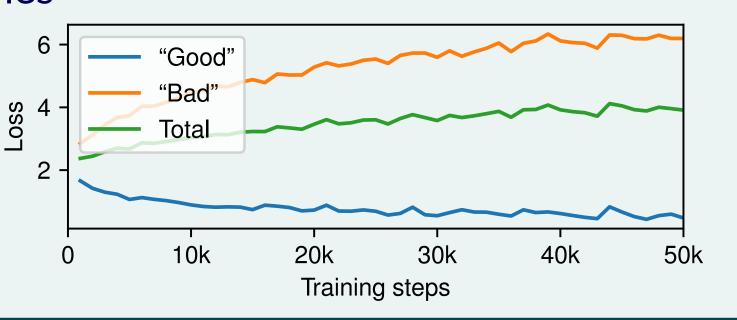
	ℓ (length cutoff)	22	24	25	26	27	28	30	32	33	36	40
Reference	+EOS +EOS+Oracle -EOS+Oracle	0.00 0.53 0.58	0.05 0.51 0.54	0.04 0.69 0.67	0.00 0.76 0.82	0.09 0.74 0.88	0.00 0.57 0.85	0.09 0.78 0.89	0.35 0.66 0.82	0.00 0.77 1.00	0.00 1.00 1.00	0.00 0.97 1.00
Ours (+EOS)	Trafo + Relative PE Universal Trafo + Relative PE	0.00 0.20 0.02 0.20	0.04 0.12 0.05 0.12	0.19 0.31 0.14 0.71	0.29 0.61 0.21 1.00	0.30 1.00 0.26 1.00	0.08 1.00 0.00 1.00	0.24 1.00 0.06 1.00	0.36 0.94 0.35 1.00	0.00 1.00 0.00 1.00	0.00 1.00 0.00 1.00	0.00 1.00 0.00 1.00

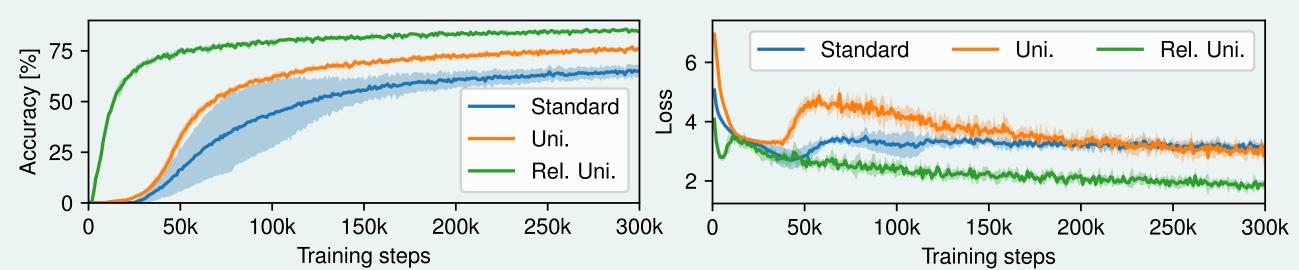

Problems with model selection

IID validation accuracy have weak or no signal for determining
 OOD test accuracy


	Transformer	Uni. Transformer	Rel. Transformer	Rel. Uni. Transformer
SCAN (length cutoff=26)	$1.00 \pm 0.00 (0.30)$	$1.00 \pm 0.00 (0.21)$	$1.00 \pm 0.00 (0.72)$	$1.00 \pm 0.00 (1.00)$
COGS	$1.00 \pm 0.00 (0.80)$	$1.00 \pm 0.00 (0.78)$	1.00 ± 0.00 (0.81)	$1.00 \pm 0.00 (0.77)$
Math: add_or_sub Math: place_value	$1.00 \pm 0.00 (0.89)$ $0.80 \pm 0.45 (0.12)$	$1.00 \pm 0.00 (0.94)$ $1.00 \pm 0.00 (0.20)$	1.00 ± 0.00 (0.91)	$1.00 \pm 0.00 (0.97)$ $1.00 \pm 0.00 (0.75)$

IID accuracy, (OOD accuracy in parenthesis)


A particularly interesting case is early stopping on COGS


Validation loss and test accuracy can grow together

- But why?
 - Decompose the train set to "good" samples which are at least once correctly classified and "bad" ones that are not
 - Loss of "bad" samples grows faster than it improves for "good" ones

Validate on OOD accuracy, not on loss

Effect of embedding scaling

- Different ways to combine token and positional embeddings
- 1 Token Embedding Upscaling (TEU) Vaswani et al. (2017) Xavier initialization for word embeddings, scale them up

$$\boldsymbol{H}_i = \sqrt{d_{\mathrm{model}}} \boldsymbol{E}_{w_i} + \boldsymbol{P}_i$$

2 No scaling, initialize word embeddings to N(0,1)

$$oldsymbol{H}_i = oldsymbol{E}_{w_i} + oldsymbol{P}_i$$

3 **Position Embedding Downscaling (PED**). Kaiming initialization for word embeddings.

$$oldsymbol{H}_i = oldsymbol{E}_{w_i} + rac{1}{\sqrt{d_{ ext{model}}}} oldsymbol{P}_i$$

		IID Validation	Gen. Test
COGS	TEU No scaling PED	$egin{array}{l} 1.00 \pm 0.00 \ 1.00 \pm 0.00 \ 1.00 \pm 0.00 \end{array}$	0.78 ± 0.03 0.62 ± 0.06 0.80 ± 0.00
PCFG	TEU No scaling PED	0.92 ± 0.07 0.97 ± 0.01 0.96 ± 0.01	0.47 ± 0.27 0.63 ± 0.02 0.65 ± 0.03

Putting them together

- Use layer sharing (Universal Transformers)
- Use relative positional encodings
- Use OOD validation set
- Be careful with early stopping
- Embedding scaling is important

Results

- Revisiting details which are often overlooked in the standard IID tasks helped a lot!
- We obtain very large improvements over existing baselines!

	Trafo	Uni. Trafo	Rel. Trafo	Rel. Uni. Trafo	Prior Work
SCAN (length cutoff=26)	0.30 ± 0.02	0.21 ± 0.01	0.72 ± 0.21	$\textbf{1.00} \pm \textbf{0.00}$	$0.00^{[1]}$
CFQ Output length CFQ MCD 1 CFQ MCD 2 CFQ MCD 3 CFQ MCD mean	0.57 ± 0.00 0.40 ± 0.01 0.10 ± 0.01 0.11 ± 0.00 0.20 ± 0.14	0.77 ± 0.02 0.39 ± 0.03 0.09 ± 0.02 0.11 ± 0.01 0.20 ± 0.14	0.64 ± 0.06 0.39 ± 0.01 0.09 ± 0.01 0.11 ± 0.01 0.20 ± 0.14	$egin{array}{l} {f 0.81} \pm {f 0.01} \ 0.39 \pm 0.04 \ {f 0.10} \pm {f 0.02} \ {f 0.11} \pm {f 0.03} \ {f 0.20} \pm {f 0.14} \ \end{array}$	
PCFG Productivity split PCFG Systematicity split	0.65 ± 0.03 0.87 ± 0.01	0.78 ± 0.01 0.93 ± 0.01	-0.89 ± 0.02	$0.85 \pm 0.01 \\ 0.96 \pm 0.01$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
COGS	0.80 ± 0.00	0.78 ± 0.03	$\textbf{0.81} \pm \textbf{0.01}$	0.77 ± 0.01	$0.35 \pm 0.06^{[5]}$
Math: add_or_sub Math: place_value	0.89 ± 0.01 0.12 ± 0.07	0.94 ± 0.01 0.20 ± 0.02	0.91 ± 0.03	$egin{array}{c} 0.97 \pm 0.01 \ 0.75 \pm 0.10 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$