The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers Róbert Csordás robert@idsia.ch Kazuki Irie kazuki@idsia.ch Jürgen Schmidhuber juergen@idsia.ch # Systematic generalization • Ability to perform well well on **systematically different** inputs, governed by the same rules - Existing methods - 1 Neural networks with supervised learning usually fail - 2 Meta-learning: helps a bit, but far from ideal - 3 Neuro-symbolic hybrids: work well, but task specific ## Hypotheses - The transformer achitecture looks well-suited for the algorithmic tasks usually used to test systematic generalization (but they are typically reported to fail in such tasks) - The default configurations used are sub-optimal: they are typically just taken from the standard machine translation task - There are existing augmentations of Transformers relevant for systematic generalization which are underexplored! # Architectural changes for sys. gen. 1 Decomposing the problem to elementary, reusable components should boost generalization - In Transformers, the output of an operation is available to only to the successive layers. Since operations should be composable in any order, layers should be shared. - This should help systematicity - 2 Long compositions are often made of multiple local compositions - Should have a bias toward local computation #### The EOS decision problem - Described by Newman et al. (2020) - The performance of neural networks is better if trained without the EOS token, even compared to oracle length-evaluation - Universal Transformers with relative positional encoding generalize well without any tricks | | ℓ (length cutoff) | 22 | 24 | 25 | 26 | 27 | 28 | 30 | 32 | 33 | 36 | 40 | |-------------|---|------------------------------|------------------------------|-------------------------------------|-------------------------------------|--|--|--|-------------------------------------|--|--|--| | Reference | +EOS
+EOS+Oracle
-EOS+Oracle | 0.00
0.53
0.58 | 0.05
0.51
0.54 | 0.04
0.69
0.67 | 0.00
0.76
0.82 | 0.09
0.74
0.88 | 0.00
0.57
0.85 | 0.09
0.78
0.89 | 0.35
0.66
0.82 | 0.00
0.77
1.00 | 0.00
1.00
1.00 | 0.00
0.97
1.00 | | Ours (+EOS) | Trafo + Relative PE Universal Trafo + Relative PE | 0.00
0.20
0.02
0.20 | 0.04
0.12
0.05
0.12 | 0.19
0.31
0.14
0.71 | 0.29
0.61
0.21
1.00 | 0.30
1.00
0.26
1.00 | 0.08
1.00
0.00
1.00 | 0.24
1.00
0.06
1.00 | 0.36
0.94
0.35
1.00 | 0.00
1.00
0.00
1.00 | 0.00
1.00
0.00
1.00 | 0.00
1.00
0.00
1.00 | ### Problems with model selection IID validation accuracy have weak or no signal for determining OOD test accuracy | | Transformer | Uni. Transformer | Rel. Transformer | Rel. Uni. Transformer | |------------------------------------|--|--|-------------------------|--| | SCAN (length cutoff=26) | $1.00 \pm 0.00 (0.30)$ | $1.00 \pm 0.00 (0.21)$ | $1.00 \pm 0.00 (0.72)$ | $1.00 \pm 0.00 (1.00)$ | | COGS | $1.00 \pm 0.00 (0.80)$ | $1.00 \pm 0.00 (0.78)$ | 1.00 ± 0.00 (0.81) | $1.00 \pm 0.00 (0.77)$ | | Math: add_or_sub Math: place_value | $1.00 \pm 0.00 (0.89)$
$0.80 \pm 0.45 (0.12)$ | $1.00 \pm 0.00 (0.94)$
$1.00 \pm 0.00 (0.20)$ | 1.00 ± 0.00 (0.91) | $1.00 \pm 0.00 (0.97)$
$1.00 \pm 0.00 (0.75)$ | IID accuracy, (OOD accuracy in parenthesis) A particularly interesting case is early stopping on COGS Validation loss and test accuracy can grow together - But why? - Decompose the train set to "good" samples which are at least once correctly classified and "bad" ones that are not - Loss of "bad" samples grows faster than it improves for "good" ones #### Validate on OOD accuracy, not on loss # Effect of embedding scaling - Different ways to combine token and positional embeddings - 1 Token Embedding Upscaling (TEU) Vaswani et al. (2017) Xavier initialization for word embeddings, scale them up $$\boldsymbol{H}_i = \sqrt{d_{\mathrm{model}}} \boldsymbol{E}_{w_i} + \boldsymbol{P}_i$$ 2 No scaling, initialize word embeddings to N(0,1) $$oldsymbol{H}_i = oldsymbol{E}_{w_i} + oldsymbol{P}_i$$ 3 **Position Embedding Downscaling (PED**). Kaiming initialization for word embeddings. $$oldsymbol{H}_i = oldsymbol{E}_{w_i} + rac{1}{\sqrt{d_{ ext{model}}}} oldsymbol{P}_i$$ | | | IID Validation | Gen. Test | |------|--------------------------|--|---| | COGS | TEU
No scaling
PED | $egin{array}{l} 1.00 \pm 0.00 \ 1.00 \pm 0.00 \ 1.00 \pm 0.00 \end{array}$ | 0.78 ± 0.03 0.62 ± 0.06 0.80 ± 0.00 | | PCFG | TEU
No scaling
PED | 0.92 ± 0.07 0.97 ± 0.01 0.96 ± 0.01 | 0.47 ± 0.27 0.63 ± 0.02 0.65 ± 0.03 | # Putting them together - Use layer sharing (Universal Transformers) - Use relative positional encodings - Use OOD validation set - Be careful with early stopping - Embedding scaling is important #### Results - Revisiting details which are often overlooked in the standard IID tasks helped a lot! - We obtain very large improvements over existing baselines! | | Trafo | Uni. Trafo | Rel. Trafo | Rel. Uni. Trafo | Prior Work | |--|---|---|---|--|---| | SCAN (length cutoff=26) | 0.30 ± 0.02 | 0.21 ± 0.01 | 0.72 ± 0.21 | $\textbf{1.00} \pm \textbf{0.00}$ | $0.00^{[1]}$ | | CFQ Output length CFQ MCD 1 CFQ MCD 2 CFQ MCD 3 CFQ MCD mean | 0.57 ± 0.00 0.40 ± 0.01 0.10 ± 0.01 0.11 ± 0.00 0.20 ± 0.14 | 0.77 ± 0.02 0.39 ± 0.03 0.09 ± 0.02 0.11 ± 0.01 0.20 ± 0.14 | 0.64 ± 0.06 0.39 ± 0.01 0.09 ± 0.01 0.11 ± 0.01 0.20 ± 0.14 | $egin{array}{l} {f 0.81} \pm {f 0.01} \ 0.39 \pm 0.04 \ {f 0.10} \pm {f 0.02} \ {f 0.11} \pm {f 0.03} \ {f 0.20} \pm {f 0.14} \ \end{array}$ | | | PCFG Productivity split PCFG Systematicity split | 0.65 ± 0.03
0.87 ± 0.01 | 0.78 ± 0.01
0.93 ± 0.01 | -0.89 ± 0.02 | $0.85 \pm 0.01 \\ 0.96 \pm 0.01$ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | | COGS | 0.80 ± 0.00 | 0.78 ± 0.03 | $\textbf{0.81} \pm \textbf{0.01}$ | 0.77 ± 0.01 | $0.35 \pm 0.06^{[5]}$ | | Math: add_or_sub Math: place_value | 0.89 ± 0.01
0.12 ± 0.07 | 0.94 ± 0.01
0.20 ± 0.02 | 0.91 ± 0.03 | $egin{array}{c} 0.97 \pm 0.01 \ 0.75 \pm 0.10 \end{array}$ | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$ |