

Improving Differentiable Neural Computers Through Memory Masking, De-

allocation, and Link Distribution Sharpness Control

Róbert Csordás robert@idsia.ch

Jürgen Schmidhuber juergen@idsia.ch

Summary

- DNC is very general and can solve many tasks. But task-specific methods often outperform it
- Can we close the gap between DNC and task-specific methods?
- We improve DNC's address generation methods
 - 1. Masked content-based lookup avoids score calculation problems of the cosine distance comparator
 - 2. **Modified deallocation** avoids aliasing through non-erased memory contents
 - 3. Sharpness enhancement of temporal linkage addresses overcomes their noisiness

Content-based lookup

- Goal: retrieve unknown information (the cell data) based on partial knowledge (the query key)
- Content based lookup compares a query key to each memory cell to produce an address distribution
- The score is normalized by the whole memory contents, thus the effect of unknown data (green) can dominate the score calculation

Solution: explicit masking of both the data and the query key

- Advantages:
 - Dynamic key-value separation
 - More general than key-value memory
 - The decision what to search for can be made after storing
 - Can be used for any attention mechanism

Deallocation problem

- Allocation states are tracked by usage counters
- Memory allocation chooses the least used address
- Freeing memory is achieved by decreasing the usage counters of previously read addresses
- Problem: memory contents do not change. Content-based lookup still can find the deallocated cells

Which is correct?
BDFC?
ECA?

deallocated start

start marker

found by content-based lookup

Solution: erase the memory while decrementing usage counters

$$oldsymbol{M}_t = oldsymbol{M}_{t-1} oldsymbol{\odot} \psi_t \mathbf{1}^T \odot (oldsymbol{E} - \mathbf{w}_t^w \mathbf{e}_{\mathbf{t}}^\intercal) + \mathbf{w}_t^w \mathbf{v}_t^\intercal$$

Link sharpness control

- Noise from write address distributions is accumulating in the link matrix
- Address distributions resulting from temporal linkage might not sum to 1
- Solution: exponentiation and renormalization

$$\mathbf{f}_t^i = S\left(\mathbf{L}_t \mathbf{w}_{t-1}^{r,i}, s_t^{f,i}\right) \quad \mathbf{b}_t^i = S\left(\mathbf{L}_t^{\mathsf{T}} \mathbf{w}_{t-1}^{r,i}, s_t^{b,i}\right)$$
$$S(\mathbf{d}, s)_i = \frac{(\mathbf{d}_i)^s}{\sum_j (\mathbf{d}_j)^s}$$

Results

 The net actively changes the mask when looking up different parts of the stored vectors

 Repeated copy: Without sharpness enhancement, the net does not use temporal links (above), with sharpness enhancement it does (below)

 Impact of deallocation and sharpness enhancement on repeated copy task

• Mean test error on **bAbl**. Our model shows a **43**% relative **imporvement** in bAbl mean error (9.5% compared to 16.7%)