
Systematic Generalization in Connectionist
Models

Doctoral Dissertation submitted to the

Faculty of Informatics of the Università della Svizzera italiana

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

presented by

Róbert Csordás

under the supervision of

Prof. Jürgen Schmidhuber

September 2023





Dissertation Committee

Prof. Cesare Alippi Università della Svizzera italiana, Switzerland
Prof. Rolf Krause Università della Svizzera italiana, Switzerland
Prof. Dzmitry Bahdanau McGill University/MILA/ServiceNow, Canada
Prof. Jacob Andreas Massachusetts Institute of Technology, USA
Prof. Marco Baroni Pompeu Fabra University, Spain

Dissertation accepted on 18 September 2023

Research Advisor PhD Program Director

Prof. Jürgen Schmidhuber Prof. Walter Binder/ Prof. Stefan Wolf

i



I certify that except where due acknowledgement has been given, the work
presented in this thesis is that of the author alone; the work has not been sub-
mitted previously, in whole or in part, to qualify for any other academic award;
and the content of the thesis is the result of work which has been carried out
since the official commencement date of the approved research program.

Róbert Csordás
Lugano, 18 September 2023

ii



Abstract

In recent years, neural networks (NNs) revolutionized computer science, solv-
ing many problems out of reach of classical methods. Thanks to their flexibility,
they can process raw data, such as images, audio, or text, and defeat humans
in games. However, a critical challenge remains: they often fail on test data
that follow the same underlying rules as the training data but present superficial
differences, like longer inputs or unseen word combinations. Generalization
to such structurally related data is called systematic generalization. Analysis
suggests that NNs often learn a smart interpolation between their training data
points and rarely learn a generally applicable rule-based solution. This limits
both their applicability and their trustworthiness. Thus, systematic generaliza-
tion is of utmost importance. This work consists of multiple parts. First, we
improve the performance of differentiable neural computers in algorithmic and
reasoning tasks. Then we analyze the implicit modularity of neural networks
and show that it does not support compositionality. Motivated by composition-
ality, we introduce architectural changes to transformers, significantly boosting
generalization on multiple well-known datasets. Pushing this idea further, we
introduce the purely connectionist NDR architecture that can generalize to
longer inputs on algorithmic tasks. Then we move our focus to systematicity,
and we propose a new dataset to analyze the behavior of the model. Finally,
we focus on scaling up NDRs to real-world tasks and improving the Mixture of
Experts models, matching the performance of the parameter-equivalent dense
baselines. We hope that the high-level ideas outlined in this thesis can provide
guidance for further research aiming to achieve compositional generalization.

iii



Acknowledgements

I am deeply grateful to my supervisor, Jürgen Schmidhuber, for giving me the
opportunity to pursue my PhD in his lab at IDSIA. He encouraged me to explore
my own research ideas, which was crucial to the direction of this PhD thesis.
He also provided financial support for my studies and the hardware we used in
our lab. Our discussions deeply influenced my view about neural networks as
general-purpose computers that should execute algorithms.

I would also like to thank my loving wife Dorottya Cserpán for all the sup-
port she gave me during the difficult parts of this journey. I am also grateful for
her patience for the long weekends I sometimes had to spend working on differ-
ent projects. I am thankful to my parents, Mária and István, for supporting my
passion for science and supporting me in my childhood despite their difficult
financial situation.

If I have to nominate a single person who impacted me the most during my
PhD, then this is Kazuki Irie. His way of approach to research, managing, and
executing projects had a deep influence on me. His support was very valuable
to me. His positive attitude is very inspiring and motivating.

I am grateful for all my colleagues, Aleksandar Stanic, Francesco Fac-
cio, Imanol Schlag, Vincent Hermann, Anand Gopalakrishnan, Sjoerd van
Steenkiste, Louis Kirsch, Mikhail Andronov, Aditya Ramesh, Quinhan Hou, and
Dylan Ashley, for all the wonderful time spent together. We not only engaged in
scientific discussions and learned from each other, but also had a lot of fun hik-
ing, playing board games, and traveling. I would also like to emphasize our dis-
cussions with Imanol Schlag, who not only has a research interest aligned with
mine, but also helped me maintaining the hardware infrastructure of the lab.

I would like to thank my hosts at DeepMind, Jordan Hofman and Michela
Paganini for having me as their intern. I would also like to thank my collabora-
tors, especially Petar Veličković, Andrea Banino, Grégoire Delétang and Anian
Ruoss.

Finally, I would like to thank my friend Kis-Benedek Ágnes for the initial push
that initiated this wonderful journey.

iv



Contents

Contents v

1 Introduction 1
1.1 Systematic Generalization . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Characterizing Systematic Generalization . . . . . . . . 3
1.2 The Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Learning More Algorithmically . . . . . . . . . . . . . . . . . . 5

1.3.1 The Memory Architecture of Modern Neural Networks . 6
1.3.2 The Need for Sequential Computation . . . . . . . . . . 9
1.3.3 Breaking Down the Problem in Subproblems . . . . . . 11

1.4 Systematic Generalization in the Age of Large Language Models 12
1.5 Related Concepts . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Related Work Overview . . . . . . . . . . . . . . . . . . . . . 17

2 Improving Differentiable Neural Computers 20
2.1 Brief Overview of DNC . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 The Effect of Modifications . . . . . . . . . . . . . . . . 26
2.3.2 bAbI Experiments . . . . . . . . . . . . . . . . . . . . . 28

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Inspecting the Implicit Modularity of Neural Networks 33
3.1 Discovering Modules via Weight-Level Introspection . . . . . . 35
3.2 Analyzing Fundamental Properties of Modules . . . . . . . . . 37

3.2.1 Addition/Multiplication Experiments . . . . . . . . . . . 38
3.2.2 Double-Addition Experiments . . . . . . . . . . . . . . 39
3.2.3 Transfer Learning Experiments . . . . . . . . . . . . . . 42
3.2.4 A Potential Explanation for Lack of Weight Sharing . . . 43

v



vi Contents

3.3 Analyzing Systematic Generalization on Algorithmic Tasks . . . 44
3.4 Analyzing Convolutional Neural Networks . . . . . . . . . . . 46
3.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Improving the Systematic Generalization of Transformers 49
4.1 Datasets and Model Architectures for Systematic Generalization 50

4.1.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1.2 Model Architectures . . . . . . . . . . . . . . . . . . . 52

4.2 Improving Transformers on Systematic Generalization . . . . . . 52
4.2.1 Addressing the EOS Decision Problem with Relative Posi-

tional Embedding . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Model Selection Should Be Done Carefully . . . . . . . 55
4.2.3 Large Impacts of Embedding Scaling . . . . . . . . . . . 59

4.3 Results Across Different Datasets . . . . . . . . . . . . . . . . . 60
4.3.1 SCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 CFQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 PCFG . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.4 COGS . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.5 Mathematics Dataset . . . . . . . . . . . . . . . . . . . 63

4.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Achieving Length Generalization with Transformers 65
5.1 Improving Transformers for Learning Adaptive Control Flow . . 66

5.1.1 Copy Gate: Learning to Skip Operations (Vertical Flow) 67
5.1.2 Geometric Attention: Learning to Attend to the Closest

Match (Horizontal Flow) . . . . . . . . . . . . . . . . . 68
5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Compositional Table Lookup . . . . . . . . . . . . . . . 71
5.2.2 Simple Arithmetic . . . . . . . . . . . . . . . . . . . . . 74
5.2.3 ListOps . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81



vii Contents

6 Inspecting Systematicity of Neural Networks 82
6.1 Original CTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.2 Extensions for Systematicity: CTL++ . . . . . . . . . . . . . . 83
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3.1 Results on Variants ‘A’ and ‘R’ . . . . . . . . . . . . . . 86
6.3.2 Results of Staged Variant ‘S’ . . . . . . . . . . . . . . . 88

6.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7 Accelerating Transformer MLP Layers: a Path Towards Scalable NDRs 90
7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.2 Approximating 2-layer MLPs . . . . . . . . . . . . . . . . . . . 93

7.2.1 Top-K Activation Function . . . . . . . . . . . . . . . . 94
7.2.2 Product-Key Memories (PKMs) . . . . . . . . . . . . . . 94
7.2.3 Mixture of Experts (MoE) . . . . . . . . . . . . . . . . . 95

7.3 Existing MoE Variants . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Improving Mixture of Experts . . . . . . . . . . . . . . . . . . . 99
7.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.5.1 Top-K . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.5.2 Product-Key Memory (PKM) . . . . . . . . . . . . . . . 102
7.5.3 Mixture of Experts (MoE) . . . . . . . . . . . . . . . . . 103

7.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Conclusion and Future Work 109
8.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . 110

A Further Details on Improving Differentiable Neural Computers 111
A.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 111
A.2 Hyperparameters for the Experiments . . . . . . . . . . . . . . 114

B Additional Details for Inspecting the Implicit Modularity of Neural Net-
works 115
B.1 Derivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

B.1.1 From Gumbel-Softmax to Gumbel-Sigmoid . . . . . . . 115
B.1.2 Straight-Through Estimator . . . . . . . . . . . . . . . . 116
B.1.3 The Expected Value of the Samples . . . . . . . . . . . 117
B.1.4 Choosing the Temperature . . . . . . . . . . . . . . . . 118

B.2 Additional Discussion . . . . . . . . . . . . . . . . . . . . . . . 119



viii Contents

B.2.1 Stability of the Masks . . . . . . . . . . . . . . . . . . . 119
B.2.2 Does Masking Change the Performed Operation? . . . . 119
B.2.3 Choosing Target Functionality . . . . . . . . . . . . . . 121
B.2.4 Is Attention the Solution? . . . . . . . . . . . . . . . . . 122
B.2.5 Explicitly Modular Networks . . . . . . . . . . . . . . . 123

B.3 Additional Results and Experimental Details . . . . . . . . . . . 124
B.3.1 Sanity Checking the Mask Discovery Process . . . . . . 124
B.3.2 Common Hyperparameter Choices . . . . . . . . . . . 124
B.3.3 Choosing the Regularization Hyperparameter . . . . . . 125
B.3.4 Addition/Multiplication Experiments . . . . . . . . . . . 126
B.3.5 Double Addition Experiments . . . . . . . . . . . . . . 127
B.3.6 Transfer Learning Experiments . . . . . . . . . . . . . . 130
B.3.7 Experiments on Algorithmic Tasks . . . . . . . . . . . . 130
B.3.8 CNN Experiments on CIFAR10 . . . . . . . . . . . . . . 133

C Additional Details on Improving the Systematic Generalization of Trans-
formers 142
C.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 142
C.3 Relative Positional Embedding . . . . . . . . . . . . . . . . . . 143
C.4 Embedding Scaling . . . . . . . . . . . . . . . . . . . . . . . . 143
C.5 Analyzing the Positively Correlated Loss and Accuracy . . . . . 144
C.6 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . 144

D Additional Details for Achieving Length Generalization with Transform-
ers 153
D.1 Ablations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
D.2 Details of Attention with Combined Absolute/Relative Positional

Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
D.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 157

D.3.1 Choosing the number of layers . . . . . . . . . . . . . . 158
D.3.2 Dataset Details . . . . . . . . . . . . . . . . . . . . . . 158
D.3.3 Model Details . . . . . . . . . . . . . . . . . . . . . . . 159

D.4 Additional Analysis . . . . . . . . . . . . . . . . . . . . . . . . 161
D.4.1 Compositional Table Lookup . . . . . . . . . . . . . . . 161
D.4.2 ListOps . . . . . . . . . . . . . . . . . . . . . . . . . . 161



ix Contents

E More Details on Inspecting Systematicity of Neural Networks 175
E.1 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . 175

E.1.1 Modified NDR architecture . . . . . . . . . . . . . . . . 175
E.1.2 Hyperparameters . . . . . . . . . . . . . . . . . . . . . 176

E.2 More Analyses and Plots . . . . . . . . . . . . . . . . . . . . . 177
E.2.1 Quantitative Analysis of Incompatibility . . . . . . . . . 177
E.2.2 Representative Cosine Similarities . . . . . . . . . . . . 177

F Additional Details of Accelerating Transformer MLP Layers: a Path To-
wards Scalable NDRs 181
F.1 Further Details and Analyses . . . . . . . . . . . . . . . . . . . 181

F.1.1 Definition of normalised Top-K . . . . . . . . . . . . . 181
F.1.2 Measuring the Number of Active Channels in . . . . . 181
F.1.3 More Details and Results on PKM . . . . . . . . . . . . 182
F.1.4 Further Analyses of Our σ-MoE . . . . . . . . . . . . . 183
F.1.5 More on Resource Efficiency . . . . . . . . . . . . . . . 184

F.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 184
F.2.1 A Few Words on the CUDA Kernel . . . . . . . . . . . 185
F.2.2 Additional Results on MoEs . . . . . . . . . . . . . . . . 186

Bibliography 192



Chapter 1

Introduction

Artificial Intelligence (AI) has seen enormous progress in recent years, thanks to
deep learning and artificial neural networks (NNs) [Schmidhuber, 2015, 2022].
More and more cognitively intensive tasks can be automated, such as vision
[Ciresan et al., 2012; Krizhevsky et al., 2012; Srivastava et al., 2015b,a; He
et al., 2016], language processing [Hochreiter and Schmidhuber, 1997; Bah-
danau et al., 2015; Vaswani et al., 2017; Brown et al., 2020; OpenAI, 2022,
2023] or playing games [Mnih et al., 2013; Silver et al., 2016b]. NNs also
proved to be a useful tool to accelerate scientific discoveries [Jumper et al., 2021;
Degrave et al., 2022].

Despite their recent success, NNs still suffer from significant limitations. One
of the most important is the lack of systematic generalization [Fodor et al., 1988].
Systematic generalization is the ability to generalize to novel data outside the
training distribution, but governed by the same underlying rules. The difference
between the working and failing cases is usually superficial, such as different in-
put lengths or a different combination of known ingredients. The generalization
capabilities of humans are widely assumed to be based on composition: we can
recombine knowledge in novel ways, solving previously unseen tasks. Compo-
sitional generalization is sometimes used as a synonym for systematic general-
ization. The lack of systematic generalization has many implications: to cover
the possible input space with sufficient density, a very large number of train-
ing examples are needed. Even in simple cases of composing unary functions,
the number of training examples has to grow exponentially with the number of
compositions. This is unrealistic in real-world situations. The deployed models
cannot be trusted to perform well because the network might fail on any unseen
composition. Although this can be greatly offset by a large amount of training
data [OpenAI, 2022, 2023], NNs are generally weak in reasoning tasks, which

1



2 1.1 Systematic Generalization

usually require long and diverse recombinations of elementary operations. Cur-
rent language models excel in sophisticated explanations of factual knowledge
but often fail even on the simplest arithmetic operations [Rae et al., 2022; Dziri
et al., 2023].

In this PhD thesis, we will take an algorithmic approach: we aim to make
it easier for neural architectures to represent a general-purpose computer that
is able to learn easily. This intuition leads to significant improvements in the
generalization performance of the models. In this chapter, we briefly overview
systematic generalization and introduce the main intuitions that will guide us
throughout all of our work. In the following chapters, we present six different
papers related to the topic. We start by improving the Differentiable Neural
Computer [Graves et al., 2016] in Chapter 2. Then, in Chapter 3, we analyze
whether the usual neural architectures develop an implicitly modular behav-
ior, which seems to be necessary for compositionality. After concluding with a
negative answer, we focus on the most promising architecture, the transformer
[Schmidhuber, 1991, 1992c, 1993; Vaswani et al., 2017], and improve its gener-
alization ability in Chapter 4. However, it turns out that even this is not enough
to achieve length generalization on algorithmic tasks. Thus, in Chapter 5 we
introduce the Neural Data Router (NDR) architecture that is able to generalize
in ListOps for the first time, to the best of our knowledge. However, recombin-
ing operations in novel ways (systematicity) is still elusive, so in Chapter 6 we
propose a new dataset to test the systematicity of the models, and conclude that
the current ones, including the NDR, fail miserably. Finally, we focus on solving
the main bottleneck that prevents NDRs from large-scale training: the execution
time of shared layer transformers is very slow due to the increase dmodel or dff

if the parameter count is matched. As a first step towards this, in Chapter 7
we demonstrate that, with some modifications, the MoE models can match the
performance of their parameter-matched dense counterparts.

1.1 Systematic Generalization

A historic debate began in the 1980s about the ability of connectionist models
(neural networks) to model higher-level human cognition appropriately. The ar-
gument revolves around the structural symmetry of human thought: understand-
ing certain sentences seems to be inherently related to understanding sentences
with similar structures. For example, everyone who understands the sentence
”John lovesMary” also understands ”Mary loves John” [McLaughlin, 2009]. Stan-
dard NNs with standard objectives (e.g next-word prediction) do not have a built-



3 1.1 Systematic Generalization

in structure to support these kinds of symmetrical relations. It is unclear how
they can be learned from data without seeing an exhaustive combination of el-
ementary constituents in combination (e.g seeing both John and Mary as both
subject and object); thus, neural networks are not systematic. Fodor et al. [1988]
argued that this is a fundamental issue of connectionist systems, and thus they
cannot be considered a good model of cognition. Instead, Fodor was defend-
ing his Language Of Thought hypothesis [Fodor, 1975], claiming that human
thought is based on a language-like structure that has grammar and can be pro-
cessed systematically by some rule-based system. The core components of this
symbol processing system are innate [Chomsky, 1962]. Pylyshyn [1984] argues
that such a computation is a fundamental property of the mind.

The debate is still far from settled [McLaughlin, 2009; Lake and Baroni, 2018;
Hupkes et al., 2020]. Some researchers claim that the thought is not actually
systematic [Wason, 1968; Johnson-Laird et al., 1972], others improve the sys-
tematicity of neural networks [Korrel et al., 2019; Li et al., 2019; Russin et al.,
2019; Gordon et al., 2020; Herzig and Berant, 2020; Andreas, 2020; Herzig
et al., 2021; Csordás et al., 2021, 2022a]. The original argument only took
into account simple neural networks without additional structure. Built-in struc-
tures, such as the one in Fast Weight Programmers [Schmidhuber, 1991; Schlag
and Schmidhuber, 2018; Schlag et al., 2019] and attention [Schmidhuber, 1991,
1992c, 1993; Bahdanau et al., 2015] could dramatically change the picture.
Fodor et al. [1988] seems to ignore the possibility of improving the models or
the optimization process in a way sufficient to solve the problems present in the
NNs of the time.

We believe that systematicity is a spectrum: both human minds and the
current neural models are systematic to a certain extent, as they generalize in
certain cases, while not in others. It also seems to be obvious that, as for now,
humans are much more systematic than artificial neural networks. The goal of
our research should be to reduce the gap between the two.

1.1.1 Characterizing Systematic Generalization

There is no consensus in the community on formalizing systematic generaliza-
tion. It is often studied in the context of language-based problems, which avoids
the additional complexity of parsing the raw input signal (such as images) into
more symbolic entities. In practice, the generalization ability of the models is
tested by generating test splits that differ systematically from the train set. For
example, they can have longer sequences or novel combinations of input sym-
bols.



4 1.1 Systematic Generalization

Despite the lack of consensus, the properties associated with systematic gen-
eralization are studied [Fodor et al., 1988; Fodor and McLaughlin, 1990; Pagin
and Westerståhl, 2010; Hupkes et al., 2020]. Some of the most important such
properties are the following:

1. Systematicity. Recombining known constituents in novel ways. For ex-
ample, if the model can perform arithmetic expressions in the form of
(a + b) ∗ c, it should also be able to do (a ∗ b) + c. It requires zero-shot
generalization to unseen combinations of the elementary building blocks
of the problem.

2. Productivity. Generalizing to arbitrarily large instances of a problem of the
same type as seen during the training. The only limitation is the available
memory. Generalization to longer sequences (length generalization) is a
special form of this. For example, if the model learned to add up to five
numbers, it should also work for six. Productivity does not necessarily
require unseen combinations of elementary operations but could also just
need longer chains of operations of the same type to be performed.

3. Substitutivity. Ability to handle synonyms.

4. Localism. Many problems are hierarchical: their general solution relies on
solving subproblems and combining their results. Localism states that the
solution of the subproblems should not depend on the global structure of
the problem, but should be solved locally, independent of the global con-
text. For example, to calculate a+ b in (a+ b) ∗ c, the addition operation
should not be influenced by what is outside the parentheses. Localism
is a controversial property that does not necessarily hold for natural lan-
guage, but it is helpful to investigate it in other contexts, such as synthetic
languages.

In realistic settings, such as natural language, a model that generalizes
well can find it challenging to handle exceptions. This property is called
overgeneralization, and it can be a useful indicator of the generalization ability
of the models.

Systematic generalization is far from being language-exclusive: Vision mod-
els often fail to generalize to different colors, clothes, hairstyles, number of ob-
jects, etc. [Lake et al., 2017] and they are sensitive to adversarial attacks [Szegedy
et al., 2014]. Reinforcement Learning (RL) agents often fail catastrophically due
to trivial differences, such as changing colors [Kirk et al., 2021].



5 1.2 The Difficulty

1.2 The Difficulty

The problem of generalization is challenging because there is no direct opti-
mization pressure to generalize1. There is no information in the training set
that guides what behavior we expect from the model outside the training data
distribution. All solutions found by the optimization process are equally good,
even pure memorization. Regularization and capacity bottlenecks can improve
on this, but in a way that is indirect and hard to control. There could be mul-
tiple ways around this: the most obvious is the addition of inductive biases.
Alternatives might include introducing splits of multiple difficulties to guide op-
timization (for example, by meta-learning [Schmidhuber, 1987]), using data aug-
mentation methods to generate new compositional training data [Andreas, 2020;
Akyürek and Andreas, 2022].

Adding inductive biases should be done with caution to keep the model’s
flexibility because, in real-world scenarios, the NN should be able to handle
exceptions, which rely on memorization. Thus, the model should be biased,
but not restricted to learning generally applicable rules instead of pure pattern
matching.

In addition, there could be multiple issues that prevent generalization in
current models. If only some, but not all, are fixed, the model can always fall
back to memorization. Therefore, it is challenging to measure progress. There
may be no progress made on real-world datasets for a long time [Furrer et al.,
2020; Dankers et al., 2021], until all issues are solved. This might make the
research field less attractive and more difficult to justify.

We propose approaching the problem iteratively: first, build some intuition
about what might be missing for the real-world tasks. Then distill it to a synthetic
dataset isolating the most essential problems. We can measure progress on such
a dataset, and new models could be developed. It is important to always keep
the end goal in mind and not commit to dataset-specific models. Finally, test
whether the improvements transfer to more realistic tasks, and if not, return to
the first step.

1.3 Learning More Algorithmically

In this chapter, we would like to informally build up the intuition that guides our
research. Our research goal is to enable learning in purely neural architectures

1Assuming a standard setup; we do not exclude the possibility of construction of such an
optimizer or objective.



6 1.3 Learning More Algorithmically

in an algorithmic way, which we believe will lead to a more systematic behavior.
Specifically, we would prefer that the NNs pick up algorithmic patterns when-
ever possible. For example, if trained on scientific papers [Lewkowycz et al.,
2022], the calculations in them follow clear arithmetic rules, which should ide-
ally be learned by the network. On the other hand, we would not want to
impede the network’s memorization and pattern-matching ability either, but we
would like to achieve a fuzzy mixture of the two. We believe that this is a pow-
erful combination that can adhere to rules while handling exceptions gracefully.
We think a way of achieving this is to make it easier for the NNs to learn proper
algorithms than to memorize the exponentially many combinations of inputs
necessary to cover the input space sufficiently densely.

Our main hypothesis is that neural architectures capable of algorithmic pro-
cessing must be able to represent general-purpose computers2. This aligns with
the classical view of the theory of computation [Hopcroft and Ullman, 1979].
Note that Turing completeness of the architecture does not mean that such be-
havior is learnable by gradient descent in practice. Additional changes to the
architecture or training method might be necessary to encourage learning algo-
rithmic solutions instead of pure pattern matching. For example, most RNNs
[Elman, 1990; Hochreiter and Schmidhuber, 1997] with the right parameteri-
zation can simulate a general-purpose computer with bounded memory3, but
when it comes to learning, they often fail. For example, RNNs are easily outper-
formed in practice by more complex architectures on reasoning tasks [Graves
et al., 2014, 2016]. We will see in Sec. 4 and 5 that adhering to these princi-
ples can indeed improve the generalization capabilities of our neural models.
In the following, we will discuss what we believe are the main architectural bot-
tlenecks in current-day neural networks that prevent them from learning more
algorithmically. To facilitate understanding, we will first discuss some of them
in detail: the memory architecture and the lack of recurrence.

1.3.1 The Memory Architecture of Modern Neural Networks

In order to justify our design decisions, it is helpful to consider the memory
architecture of modern neural networks in detail. In this work, we care only

2In practice, we only care about the bounded memory case, which corresponds to an FSA.
However, we would like to think in higher lever abstractions, like loops, recursion, conditional
execution, etc. Therefore, it is more useful to think of it as a Turing machine with bounded
memory, just as the practically realizable hardware computers are.

3With infinite numerical precision, RNNs with continuous state [Elman, 1990] are known to
be Turing-complete [Siegelmann and Sontag, 1991, 1995].



7 1.3 Learning More Algorithmically

about practical models with a bounded amount of memory. When we discuss
productivity, we only want to generalize to the point where the available amount
of memory is still not the bottleneck. In this section, we will discuss the differ-
ence between RNNs [Lenz, 1920; Ising, 1924; Amari, 1972; Kohonen, 1972;
Elman, 1990], memory-augmented NNs (typically RNNs with external memory
banks), and transformers. In the case of transformers, we think of the layers
as individual steps of an RNN, which is true for the shared layer case. Note
that in general, there are multiple variables (”memories”) that the network must
read, write, and make decisions on, and the number of memories might differ
between train and test time (e.g consider a learned stack for parsing context-free
grammars). Therefore, having a learning-friendly memory architecture is crucial.
In the following, we cover 3 important aspects.

How are the Different Memories Stored and Accessed?

The simplest form of memory is the state of an RNN, which is a single vector.
However, this vector can be arbitrarily big; thus, in theory, it is possible to store
and retrieve an arbitrary number of memories in this single vector. However, it
is unclear how the NN controller can learn a mechanism that can generalize to
store more memories than was seen during training. The common assumption
is that making the state large enough should help. We would like to challenge
this assumption. If we assume that the network stores all stored variables in a
different linear subspace of the state vector4 we run into a problem: accessing
a ”new” linear subspace of the state vector (that is orthogonal to what is used
during training) in test time seems difficult. To see why, consider the dual formu-
lation of the layer [Irie et al., 2022] that receives such a vector as input. Since this
new input is orthogonal to every input seen during training, no update made by
gradient descent has an effect on it (see Eq. 11 by Irie et al. [2022]), and the layer
will appear as ”untrained” for this specific input. The existence of an alternative
solution cannot be excluded (e.g. storing variables in some non-linear fashion),
but it seems to be difficult to learn (our preliminary experiments confirm this).
The superior performance of NNs with external memory [Graves et al., 2014;
Joulin and Mikolov, 2015; Graves et al., 2016; Schlag and Schmidhuber, 2018;
Suzgun et al., 2019] supports this view.

Memory-augmented NNs overcome this issue by having an explicit mech-
anism built in to manage the repeated structure of their memories. This guar-

4There is an increasing amount of evidence that NNs prefer to store features in linearly sepa-
rable subspaces. See the probing literature, e.g. Alain and Bengio [2017]; Hupkes et al. [2018];
Lakretz et al. [2019].



8 1.3 Learning More Algorithmically

antees that an arbitrary number of cells can be stored and retrieved (given a
specific limit set explicitly and memory constraints). It also guarantees that all
retrieved memories are in the same format and that no additional transformation
is applied to them. Transformers behave in a similar manner: Each column of a
transformer maintains its own independent state, thus acting like a memory in
which each cell is transformed at each step.

How Easy is it to Make Decisions Based on the Memory Content?

It is not enough to be able to store and retrieve memories, but the network
should be able to make decisions based on the contents of the memory. This
acts as a ”control flow” for the algorithm they are learning to execute. RNNs and
transformers have access to each memory cell in each of their processing steps
(which are layers in the case of the transformer). However, memory-augmented
neural networks typically have access only to a single or eventually a few mem-
ory cells at once. This makes decisions based on memory content difficult as the
controller has to memorize the sequence of operations it has to perform based
on the restricted amount of information available. We hypothesize that this can
lead to easier overfitting on certain tasks.

How Many Memories Can be Updated Simultaneously?

Memory-augmented NNs update only one memory cell at a time. On the con-
trary, transformers and RNNs can update all of their memory. This enables im-
plementing a parallel version of the algorithms they are potentially performing,
shortening the path of the gradients, thus making the learning problem easier.
There is an additional caveat: the way the input and output are usually handled
in RNNs in practice makes them closer to the Memory-augmented NNs and not
well suited for parallel processing (see Sec. 1.3.3). Transformers, on the other
hand, process all inputs and outputs in parallel in practice as well. This, in
theory, could enable the learning of parallel algorithms, similarly to a GPU.

Summary

Fig. 1.1 shows the memory architecture of popular NNs visually. In summary,
of the architectures considered, based on their memory architecture, transform-
ers seem to be best suited for learning parallel algorithms: They have separate
memory cells that are operated on in parallel with identical processing struc-
tures that act on them. Each cell can be processed in parallel. The downside



9 1.3 Learning More Algorithmically

(a) RNN (b) Memory-augmented NN

(c) Transformer

Figure 1.1: Memory architecture of modern neural networks. Orange blocks
denote memory cells. Dark orange denotes updated memory cells, while light
orange denotes memory cells that are left unchanged in the given step. Light gray
denotes a computation step. (a) An RNN [Elman, 1990] (e.g LSTM [Hochreiter
and Schmidhuber, 1997]). It has a single memory cell that is updated at each
step. (b) A memory-augmented RNN, such as NTM [Graves et al., 2014] or
DNC [Graves et al., 2016]. The memory is extended to multiple cells, of which
only some are updated. (c) (universal) transformers [Schmidhuber, 1991, 1992c,
1993; Vaswani et al., 2017; Dehghani et al., 2019]. Memory consists of multiple
cells. Each cell is updated in each step (the step here corresponds to layers).

is the extensive computational demand if the algorithm to be considered is not
parallelizable: In each step, each memory cell is updated even if only some of
them should. As we shall see in Sec. 5.1.1, this can pose additional challenges
beyond wasted computation, affecting the consistency of the data. Because all
cells are updated at the same time, no global decision about the next computa-
tion step should be made, facilitating generalization.

1.3.2 The Need for Sequential Computation

Compositional behavior could be naturally achieved by breaking the problem
into subproblems that are easy to solve (or memorized before) and combining



10 1.3 Learning More Algorithmically

the subresult 5. Each of these steps represents an unsolved problem alone. Let
us focus on combining the subresults. To have something to combine, the sub-
results should already have been calculated. This necessitates multiple steps of
computation. Since, in general, it should be possible to combine operations in
any order, knowledge of how to perform them must be available at each step.
This requires recurrence. Classical results from the theory of computation also
support this hypothesis: all well-known models of universal computation are
either recurrent (Turing machines, cellular automatons) or recursive (Lambda
calculus). RNNs, memory-augmented NNs, and Universal Transformers [De-
hghani et al., 2019] are recurrent by their definition. However, the behavior of
non-shared layer transformers in this regard is unclear.

Transformers and Recurrence

Transformers without shared layers are not recurrent by default. However, lan-
guage models are trained for next-word prediction, providing a recurrent con-
nection from the current output to the next input (see Fig. 1.2). The success of
recent large language models [Radford et al., 2019; Brown et al., 2020; Ope-
nAI, 2023] in reasoning tasks, especially with scratchpads [Nye et al., 2022]
and chain-of-thought prompting [Wei et al., 2022] shows that these models are
capable of reusing the subresults produced by them in an earlier timestep [Anil
et al., 2022].

However, this kind of recurrence is limited. Only discrete symbols can be
passed from one step to the next, and the distribution of such symbol sequences
must match the distribution of the training data. On one hand, this can be
helpful: The teacher forcing [Williams and Zipser, 1989] provides step-by-step
supervision on the sequence of steps that the reasoning process should take.
However, the granularity of this supervision might be insufficient. For example,
Minerva [Lewkowycz et al., 2022] was trained on 60B tokens of arXiv papers
related to mathematics, but sometimes it still fails in simple addition 6. We hy-
pothesize that one of the reasons is that in the training data (scientific papers),
even though many examples of additions were seen, it is rare to write out the
individual steps of the long addition algorithm. Even if the network could learn
to break down the algorithm into its elementary steps, there is no way to incor-

5Other solutions might also be possible, for example generating the weights of a network
that solves the problem in a single step. However, the composition of subresults in different
timesteps, as CPUs and GPUs do, seems more natural. We decided to focus on this type of
solution in our research.

6https://minerva-demo.github.io/#category=Algebra&index=62

https://minerva-demo.github.io/#category=Algebra&index=62


11 1.3 Learning More Algorithmically

porate their subresults in the input/output of the model.

Figure 1.2: Autoregressive transformers feed back their output to their input in
the next step (green arrow). This provides a form of a recurrence.

1.3.3 Breaking Down the Problem in Subproblems

Unlike transformers, RNNs (including memory-augmented NNs) can pass arbi-
trary memory content between individual computation steps, without restric-
tions. However, the number of computation steps performed is usually dictated
by the input and output of the model: In each step, they consume one input
and produce an output. This makes it impossible to break down a problem
into a long list of subproblems. Methods of adaptive computation time (ACT;
Schmidhuber [2012]; Graves [2016]; Banino et al. [2021]) are proposed as a rem-
edy. However, using ACT with RNNs would require learning a fully sequential
algorithm, which could require many steps and could result in vanishing or ex-
ploding gradients [Hochreiter, 1991], and it is not parallelizable. Introducing
recurrence in transformers, by sharing their layers [Dehghani et al., 2019; Csor-
dás et al., 2022a] seems to be a better solution: many algorithms can be (at least
partially) parallelized, significantly reducing the number of the required steps,
while also retaining a sufficient amount of sequential computation (in the layer
dimension) to be able to compose subresults.

As an alternative view of this decomposition problem, consider the goal of
avoiding fusing elementary operations together. For example, Fig. 1.3 shows an
example of adding four numbers together. It is possible to do this in a single
step with a 4-way adder or in 3 steps with a 2-way one. If the network learned to
compose 2-way adders, it is likely that it will work with any number of operands
(as long as the range of the input and result is within the one seen during the
training). In the case of a fused operation, such a generalization is not possi-



12 1.4 Systematic Generalization in the Age of Large Language Models

ble. Unfortunately, the lack of adaptive computation time (see above) makes
the models prefer fused solutions, since they are always doable in a single step.

+

n
1

n
2

n
3

n
4

n
1
+n

2
+n

3
+n

4

(a) Short and parallel computation

+n
1 + +

n
3

n
4

n
1
+n

2
+n

3
+n

4

n
2

(b) Long and sequential computation

Figure 1.3: An example of solving a problem (adding 4 numbers) in different
ways. (a) Parallel solution: a 4-way adder. It can calculate the result in a single
step, but it does not generalize to adding a different amount of numbers. (b)
Serial solution with a 2-way adder. The same model should be able to add any
amount of numbers.

1.4 Systematic Generalization in the Age of Large
Language Models

Large Language Models [Radford et al., 2019; Brown et al., 2020; OpenAI, 2022,
2023], especially with instruction tuning [Ouyang et al., 2022], show remark-
able reasoning capabilities [Bubeck et al., 2023]. This raises the question of
whether any effort to improve systematic generalization or inducing algorithmic
behavior has legitimacy.

First, we note that these models are trained on a cleaned-up version of
the whole Internet [Brown et al., 2020; Gao et al., 2021; Raffel et al., 2020;
Lewkowycz et al., 2022], including web crawls, books, open source code, syn-
thetically generated data (typically for math), arXiv papers, etc. Most of these
datasets are not publicly available. Thus, it is impossible to know whether some
task is out-of-distribution. Also, some publicly available datasets are often part
of the training data; thus benchmarking models that are trained after the dataset
was released is delusive.

Currently, it is not clear what is the limit of these models. The papers re-
leased by the companies that develop them tend to exaggerate their capabilities
[Bubeck et al., 2023; OpenAI, 2023]. Independent analysis suggests that they
still struggle with generalization. Tian et al. [2023] analyzes ChatGPT on cod-
ing problems and finds that it struggles to generalize to novel problems, contrary
to the claims of the original papers. He [2023] found that GPT-4 solves all 10



13 1.5 Related Concepts

easiest problems on Codeforces before 2021 (which corresponds to their knowl-
edge cutoff date7), but fails on all the newer ones. A more rigorous evaluation
also shows a disappointing performance of GPT-4 on programming tasks [Enryu,
2023]. Weiss [2022] found that when ChatGPT is used as a code interpreter to
”run” Python programs, it often ignores the details of the provided code and sim-
ply repeats a memorized sequence (e.g. the first 10 primes). Liu et al. [2023]
demonstrated that ChatGPT and GPT-4 struggle with reasoning datasets devel-
oped after their knowledge cut-off date. Wu et al. [2023] generates a modified
counterfactual version of common reasoning tasks and shows that the perfor-
mance of the model is significantly reduced.

Overall, there is not enough evidence to conclude to what extent these mod-
els generalize. However, based on the independent evaluations and on the fact
that they are not recurrent, there is good reason to believe that their fundamen-
tal limitations match those of the much smaller models. With a large enough
training set, these limitations can be offset so that the models become usable
for practical tasks, especially eliminating somewhat repetitive tasks like writing
boilerplate code. Their factual knowledge is also very high, thanks to the enor-
mous amount of data they were trained for. They could be used as an advanced,
fuzzy search engine, but caution must be taken due to hallucinations. However,
scaling by simply increasing the size of the dataset has limits. Chinchilla’s scal-
ing laws [Hoffmann et al., 2022] suggest that most of the improvements to the
models come from the dataset size as opposed to the model size. But finding
more good quality data can be challenging, given that we already train on most
of the Internet [Nostalgebraist, 2022].

We believe that making the models more systematic would push their limits
significantly. We also think that it would enable learning from a much smaller
amount of data, building on previously learned knowledge, and reducing the
necessary density of the coverage of the input space. Thus, we think that re-
search on systematic generalization is of utmost importance.

1.5 Related Concepts

Systematic generalization is closely related to many other areas of machine learn-
ing. In the following, we will discuss what we consider the most important.

7Knowledge cutoff date is when the dataset was created. It does not contain any newer
information.



14 1.5 Related Concepts

Memory-augmented neural networks. Neural networks capable of reasoning
and algorithmic processing need some form of memory. One of the early
attempts to introduce memory into connectionist models was RNNs [Amari,
1972; Kohonen, 1972; Elman, 1990], but they suffered from vanishing and
exploding gradients. LSTMs [Hochreiter and Schmidhuber, 1997] reduced the
severity of this problem and made RNNs widely applicable. However, these
methods have a significant limitation: the number of their parameters is propor-
tional to the square of their memory size. To extend the available memory size
without the explosion in the number of parameters, memory-augmented neural
networks were proposed, such as Fast Weight Programmers [Schmidhuber,
1991, 1992c], Neural Turing Machines [Graves et al., 2014] and DNC [Graves
et al., 2016]. These architectures are capable of performing more complex
reasoning tasks than their predecessors. However, they typically struggle with
generalization. Neural GPUs [Kaiser and Sutskever, 2016] are a more parallel
approach that uses two-dimensional memory and convolutions. They claim
to be able to generalize to very long sequences in simple algorithmic tasks,
but they suffer from severe instabilities: Only very few seeds generalize out
of hundreds [Kaiser and Sutskever, 2016]. Fast weight programmers are an
alternative way to increase memory capacity [Malsburg, 1981; Schmidhu-
ber, 1991, 1992c, 1993; Schlag and Schmidhuber, 2018; Irie et al., 2021].
Attention-based models [Schmidhuber, 1992a, 1993; Bahdanau et al., 2015],
such as transformers [Vaswani et al., 2017; Dehghani et al., 2019] can also be
considered memory-augmented networks, where the memory is directly initial-
ized with the input and updated by every layer application. Due to their very
parallel nature, they can be trained significantly faster, becoming the workhorse
of the recent era of large language models [Brown et al., 2020; Devlin et al.,
2019; Rae et al., 2022; Chowdhery et al., 2022; OpenAI, 2022, 2023].

Causality. focuses on disentangling the cause and its effects [Pearl, 2009;
Pearl and Mackenzie, 2018]. Causal models avoid reliance on spurious
correlations, which is a major limitation of current deep learning models.
However, classically, these models require building in knowledge about the
problem. Recently, the deep learning community has started to adopt ideas
from causality [Schölkopf, 2019; Goyal et al., 2021b; Mitrovic et al., 2021], but
learning causal relations is still an unsolved problem. In some sense, learning
causal relations is similar to decomposing problems into a sequence of more
elementary operations, which is the basis of compositionality.



15 1.5 Related Concepts

Statistical learning theory. Statistical learning theory [Vapnik, 1998] can pro-
vide error bounds on unseen IID data. Neural tangent kernels [Jacot et al., 2018]
extend the theory to deep neural networks in an infinite-width limit. However,
none of these theories focuses on out-of-distribution (OOD) generalization and
compositionality.

Domain adaptation. focuses on making the resulting model robust to domain
shifts [Blitzer et al., 2006; Ben-David et al., 2010; Koh et al., 2021]. This lit-
erature is usually concerned about raw sensor inputs, not the reasoning core
alone. Typical sources of domain shifts can be changes in the acquiring ma-
chine, camera, or data from geographically different places. It is not focused on
compositions.

Continual and curriculum learning. Models that can generalize systematically
should rely on the solutions of the elementary problems to build solutions
for the more complex ones. This might be explicitly enforced, such as in
curriculum learning [Elman, 1993; Schmidhuber, 2004; Bengio et al., 2009].
It is also related to continual learning: more and more complex skills must be
learned based on existing ones without destroying old knowledge [Schlimmer
and Fisher, 1986; McCloskey and Cohen, 1989; Ring, 1991; French, 1999;
Kirkpatrick et al., 2017a; Mallya and Lazebnik, 2018].

Symbolic processing. Many theories of generalization are based on symbols
and objects and their compositions [Whitehead, 1928; Fodor, 1975]. Oth-
ers [Solomonoff, 1964a,b; Hutter, 2000] are based on Kolmogorov complexity,
which is defined in the space of computer programs that are inherently symbolic
and compositional. Symbolic AI (sometimes also called Good Old Fashioned
AI, or GOFAI [Haugeland, 1985]) was the dominant approach in early AI sys-
tems used for theorem proving [Newell et al., 1959], expert systems [Shortliffe
and Buchanan, 1975] and early NLP systems [Weizenbaum, 1966]. They had ex-
cellent generalization capabilities within their knowledge base by construction.
However, many of them are incapable of learning, relying on a large number of
rules defined by humans, which is very costly to obtain. Maintaining a consis-
tent set of rules is prohibitively hard as the size of the knowledge bases grows.
Symbolic machine learning systems are typically capable of learning by using
some kind of search [Newell and Simon, 1961; Levin, 1973; Sussman, 1973;
Deville and Lau, 1994; Schmidhuber, 2004]. For example, inductive logic pro-
grammingmethods [Plotkin, 1972; Shapiro, 1981] were capable of learning from



16 1.5 Related Concepts

positive and negative examples. These systems typically require formalizing the
problem in some formal language. The expensive nature of discrete search also
makes these methods impractical for large problems. However, if such a search
could be done in an efficient way on raw data, the Kolmogorov complexity [Kol-
mogorov, 1965] should provide a way to select the best program out of multiple
possible solutions: according to the Minimal Description Length principle [Ris-
sanen, 1978], the model with the shortest description length should be chosen.
These attractive properties of symbolic processing motivate the effort to combine
them with neural networks in the so-called neuro-symbolic methods.

Neuro-symbolic methods. Symbolic methods are excellent in generalization
but are incapable of learning. On the other hand, NNs are good at learning,
but suffer in generalization. Neurosymbolic methods [Towell et al., 1990; Sun
and Bookman, 1994; Roli et al., 1995; Chaudhuri et al., 2021] try to combine
the advantages of the two worlds. However, the resulting methods are often
limited and are usually dataset-specific. They require a significant amount of
engineering for new applications [Silver et al., 2016a; Li et al., 2019; Chen
et al., 2020; Liu et al., 2020; Li et al., 2022b]. A widely applicable and flexible
neurosymbolic method has yet to be developed, although significant progress
has been made recently [Ellis et al., 2021].

Meta-learning. The role of meta-learning for compositional generalization is
underexplored. However, there have been some recent attempts [Deng and
Zhang, 2020; Conklin et al., 2021b]. It is a promising approach: for example,
it can make the search space more aligned to symbolic computation instead of
pattern matching. Alternatively, multiple difficulty training splits can potentially
be used to extract knowledge on what behavior is expected outside the training
regime.

Representation learning. Many works focus on learning good representations
[Ivakhnenko and Lapa, 1965b; Amari, 1967; Ivakhnenko, 1968, 1971; Hinton,
1984; Bengio et al., 2013a] that can be used efficiently for downstream
tasks. This often includes disentangled representations [Barlow et al., 1989;
Schmidhuber, 1992b; Higgins et al., 2018]. Here, the core of the underlying
problem is to identify symbolically meaningful objects and relations between
them and use them compositionally [Greff et al., 2020].



17 1.6 Related Work Overview

Modular neural networks. In these networks, specialized modules are com-
ponsed together explicitly. The structure of the network reflects the composition
of the elementary operations. The way modules are composed is often learnable
[Clune et al., 2013; Andreas et al., 2016; Kirsch et al., 2018; Chang et al., 2019;
Goyal et al., 2021b; Ruis and Lake, 2022]. These methods usually generalize
better but are hard to train. There can be multiple bottlenecks, for example, the
generalization of the composer network or, in the case of no supervision over the
structure, whether the learned modules correspond to semantically meaningful
units.

Geometric deep learning. Learning on graph-structured data can be threated
specially for learning more efficiently and better performance [Pollack, 1987;
Sperduti, 1993; Baldi and Chauvin, 1996; Goller and Küchler, 1996; Küchler
and Goller, 1996; Bronstein et al., 2017, 2021]. Most of the reasoning
problems can be represented as graphs by explicitly specifying their structure.
Thus, they can also be considered to be similar to the neurosymbolic methods.
As the structure is known, reasoning problems expressed as graph networks
usually generalize well [Velickovic et al., 2020; Velickovic and Blundell, 2021;
Dudzik and Velickovic, 2022]. However, learning the structure of the graph
together with the algorithm is an unsolved problem. Existing methods typically
assume a fully connected graph, as in transformers.

1.6 Related Work Overview

Connectionist models are often criticized for their lack of systematicity and com-
positionality [Fodor et al., 1988; Fodor and McLaughlin, 1990; Marcus, 1998,
2003; Lake and Baroni, 2018; Hupkes et al., 2020; Greff et al., 2020]. Many
papers propose datasets to analyze the generalization properties of NNs. Most
of them are based on synthetic data with systematic differences between the
train and the test set. Probably one of the most well-known such datasets is
SCAN [Lake and Baroni, 2018; Loula et al., 2018], which remains unsolved by
general-purpose architectures. Others include PCFG [Hupkes et al., 2020], CFQ
[Keysers et al., 2020], COGS [Kim and Linzen, 2020] in the language domain,
or CLEVR [Johnson et al., 2017] and CLOSURE [Bahdanau et al., 2019a] in the
visual domain.

Countless papers analyze aspects of the generalization behavior of different,
generally applicable neural networks [Bahdanau et al., 2019b; Klinger et al.,
2020; Zhang et al., 2020; Bau and Andreas, 2021; Kharitonov and Chaabouni,



18 1.6 Related Work Overview

2021; Nogueira et al., 2021; Schwarzschild et al., 2021; Zhang et al., 2021]. In
addition, some works compare specialized architectures to pre-trained models,
and they usually find limited advantages of specialized architectures [Furrer
et al., 2020; Dankers et al., 2021].

Some methods separate the prediction of alignment between source and
target sequences from the generation of output tokens [Korrel et al., 2019;
Li et al., 2019; Russin et al., 2019]. These methods typically improve on
SCAN, except for the length generalization split. More general versions allow
for permutation of the input sequence while maintaining an unconstrained
transformation [Wang et al., 2021]. Other methods exploit the symmetries in
the specific dataset to generalize better [Gordon et al., 2020].

Meta-learning [Schmidhuber, 1987] is also applied in the context of system-
atic generalization. Some methods are specialized [Lake, 2019], while others
are generally applicable [Conklin et al., 2021a].

Among neuro-symbolic methods, Chen et al. [2020] achieve an impressive
100% generalization on all SCAN splits. However, it is not clear whether such
architectures are generally applicable. Some of them leverage the structure of
SCAN to achieve significant gains [Liu et al., 2020]. Liu et al. [2021] achieve
excellent generalization on semantic parsing tasks, but requires a task-specific
hardcoded tree decoder. Guo et al. [2020] design a multistage architecture. The
stages include generating sketches, filling them, and ranking them. This lever-
ages the structure of the semantic parsing problem and shows big improvements.
Weißenhorn et al. [2022] show that compositional neural parsers are very benefi-
cial for parsing tasks, but Kim [2021] shows that his quasi-synchronous grammar-
based approach is too restrictive for more general problems. Sartran et al. [2022]
integrate syntactic inductive bias in the attention of a transformer, but their
method requires a linearized parse tree as input. Sometimes, more general archi-
tectures are trained with immediate supervision to perform more algorithmically
[Yan et al., 2020]. The approach of Shaw et al. [2021] uses a symbolic solver and
falls back to a neural backend if it fails. Some approaches generate a (partially)
discrete program in some form [Vani et al., 2021].

Generalizing to longer sequences in algorithmic tasks has proven to be espe-
cially difficult. Currently, only hybrid task-specific neuro-symbolic approaches
made significant progress [Nye et al., 2020; Chen et al., 2020; Liu et al., 2020].

Universally applicable architectures are usually designed with reasoning as
the primary focus. Sometimes, they are explicitly tested for generalization on
algorithmic tasks [Graves et al., 2014; Kaiser and Sutskever, 2016; Graves et al.,
2016; Freivalds et al., 2019; Schlag et al., 2019; Herzig and Berant, 2020]. Math-
ematics [Saxton et al., 2019; Charton et al., 2021; Lewkowycz et al., 2022] is



19 1.6 Related Work Overview

an especially popular domain. A parallel line of work is motivated by causality
[Mittal et al., 2020; Goyal et al., 2021b]. Others use certain restrictions moti-
vated by compositionality [Hudson and Manning, 2018; Akyürek and Andreas,
2021; Chaabouni et al., 2021; Liu et al., 2022]. Alternatives extend the expres-
siveness of well-known architectures [Dubois et al., 2020; Mittal et al., 2021],
or use different tricks to boost generalization [Oren et al., 2020; Ontañón et al.,
2021]. Iterative processing is also shown to help generalization [Ruiz et al.,
2021]. Varying the length of iterative processing has also been shown to be
beneficial [Schmidhuber, 2012; Graves, 2016; Banino et al., 2021].

Some architecture-agnostic methods to improve generalization include data
augmentation [Andreas, 2020; Akyürek and Andreas, 2022]. Zheng and Lapata
[2022] iteratively re-encode the input concatenated with the partial output. Qiu
et al. [2021] learns a grammar to generate new data. Curriculum learning can
also have a significant effect on generalization [Zaremba and Sutskever, 2015].

With the advent of big language models [Devlin et al., 2019; Brown et al.,
2020; Rae et al., 2022; OpenAI, 2022, 2023] a new data-driven approach
appeared. They provide input prompts or finetune the network so that the
output includes the result of each processing step to be performed [Nye et al.,
2022; Wei et al., 2022]. It has been empirically shown to significantly improve
generalization, although it is rarely tested on OOD data.



Chapter 2

Improving Differentiable Neural
Computers1

The Differentiable Neural Computer (DNC) [Graves et al., 2016] is one of the
first models to demonstrate strong reasoning capabilities. It combines large ex-
ternal memory with advanced addressing mechanisms, such as content-based
look-up and temporal linking of memory cells. Unlike specific approaches
that achieve state-of-the-art performance only on specific tasks, e.g. MemNN
[Sukhbaatar et al., 2015] or Key-Value Networks [Miller et al., 2016] for the bAbI
dataset [Weston et al., 2016], the DNC consistently reached near state-of-the-art
at the time. This generality made the DNC worth further study.

We discovered three problems with standard DNC. They revolve around the
content-based lookup mechanism, which is the main memory addressing sys-
tem, and the temporal linking used to read memory cells in the same order in
which they were written. First, the lack of key-value separation negatively im-
pacts the accuracy of content retrieval. Second, the current deallocation mecha-
nism fails to remove deallocated data from memory, which prevents the network
from erasing outdated information without explicitly overwriting the data. Third,
with each write, the noise from the write address distribution accumulates in the
temporal linking matrix, degrading the overall quality of temporal links.

Here, we propose a solution to each of these problems. We allow for dy-
namic key-value separation through masking of both the key and data, which
is more general than a naive fixed key-value memory, yet does not suffer from
loss of accuracy in addressing content. We propose to wipe the content of a

1For the full paper please see our work “Improving Differentiable Neural Computers
Through Memory Masking, De-allocation, and Link Distribution Sharpness Control” [Csordás
and Schmidhuber, 2019]

20



21 2.1 Brief Overview of DNC

memory cell in response to a decrease of its usage counter to allow for proper
memory de-allocation. Finally, we reduce the effect of noise accumulation in
the temporal linking matrix through exponentiation and renormalization of the
links, resulting in improved sharpness of the corresponding address distribution.

These improvements are orthogonal to other previously proposed DNC mod-
ifications. Incorporation of the differentiable allocationmechanism [Ben-Ari and
Bekker, 2017] or certain improvements to memory usage and computational
complexity [Rae et al., 2016] might further improve the results reported in this
paper. Certain bAbI-specific modifications [Franke et al., 2018] are also orthog-
onal to our work.

We empirically evaluated each of the proposed modifications on a bench-
mark of algorithmic tasks and on bAbI [Weston et al., 2016]. In all cases, we
find that our model outperforms the DNC. In particular, on the bAbI task, we
observe a 43% relative improvement in terms of mean error rate. We find that
improved de-allocation together with sharpness enhancement leads to zero er-
ror and 3x faster convergence on the large repeated copy task, while DNC is not
able to solve it at all.

Sec. 2.1 provides a brief overview of the DNC. Sec. 2.2 discusses identified
problems and proposed solutions in more detail. Sec. 2.3 analyzes these modi-
fications one by one, demonstrating their positive effects.

2.1 Brief Overview of DNC

Here we provide a brief overview of the Differentiable Neural Computer (DNC).
Presenting the model in full detail is out of the scope of this thesis. More details
can be found in the original work of Graves et al. [2016] and in Appendix A.1.

The DNC combines a neural network (called controller) with an external
memory that includes several supporting modules: to read and write memory,
to allocate new memory cells, to chain memory reads in the order in which
they were written, and to search memory for partial data. A simplified block
diagram of the memory access is shown in Fig. 2.1. Please note that DNCs use
a different notation in their attention mechanism than the Transformers models
popular nowadays. We try to respect the original notation introduced by Graves
[2016] in this work.

External memory. The main component of DNC is an external 2D memory or-
ganized in cells (Mt ∈ RN×W , where N is the number of cells and W is the size
of the memory word) N is independent of the number of trainable parameters.



22 2.1 Brief Overview of DNC

Figure 2.1: Simplified block diagram of DNC’s memory access module with
single read head. Yellow boxes denote the inputs from the previous time step,
orange boxes are the corresponding outputs to the next time step. Green boxes
are the control inputs from the controller. Blue, rounded boxes are modules
responsible for a specific function. ww

t denotes the write address, wr
t the read

address, Lt the temporal linkage matrix. Mt is the memory. Arrow ”r” denotes
the output of the memory read.

The controller (typically an LSTM) is responsible for producing control signals
for the gates and for the memory transactions. Memory is accessed through mul-
tiple read heads and a single write head. Cells are addressed in a soft way using
attention, which provides a soft distribution over the whole address space. Each
cell is read and written at each time step to an extent determined by the address
distributions, resulting in a differentiable procedure.

Memory addressing. The DNC uses three different addressing methods. The
most important one is content-based look-up. It compares every memory cell
with a key (k∗

t ∈ RW ) produced by the controller, resulting in a score, which
is later normalized to get an address distribution over the whole memory. The
second is temporal linking, which has 2 types: forward and backward. It is
a soft adjacency matrix (Lt ∈ RN×N ) that shows which cell is being written
after and before the one read in the previous time step. It is used to project
any address distribution to the address that follows (f i

t ∈ [0, 1]N ) or precedes it
(bit ∈ [0, 1]N ). Temporal linkage is useful for processing continuous sequences
of data and is used only for read heads. The third addressing method is the
allocation mechanism, which is used only by the write heads for allocating new
memory cells.

Memory allocation. Memory allocation works by maintaining usage counters
for every cell. These are incremented on memory writes and optionally decre-



23 2.2 Method

mented on memory reads (de-allocation). When a new cell is allocated, the
one with the lowest usage counter is chosen. Deallocation is controlled by a
gate: weighted by the gate and the address distribution of the previous read, the
usage counter of each cell is decreased.

Read / Write. In each step, the memory is first written and then read. A write
address is generated as a weighted average of the write content-based lookup
and the allocation distribution. The update is gated for each channel separately
by the ”erasing vector” et ∈ [0, 1]W . Parallel to the write, the temporal linkage
matrix is also updated. Finally, the memory is read. The read address distribu-
tion (wr,i

t ∈ [0, 1]N ) is the weighted average of the read content-based lookup
distribution and forward and backward temporal links. The weighted sum of
the memory cells is calculated using this address, resulting in a single vector,
which is the retrieved data. This is combined with the output of the controller
to produce the final output of the model.

2.2 Method

Masked content-based addressing. Content-based addressing aims to find
memory cells similar to a given query vector. This query contains partial infor-
mation (it is a partial memory), and the content-based memory read completes
its missing part based on previous memories. However, controlling which part
of the query vector to search for is difficult because there is no key-value separa-
tion: The entire query is compared with all memory cells to produce the similar-
ity score. The part of the cell that is unknown during the search time and should
be retrieved is also used in the normalization part of the cosine similarity, re-
sulting in an unpredictable score. With less information in the query vector (the
longer the part to be retrieved), the problem becomes worse. This could result
in less similar cells having higher scores and could flatten the resulting address
distribution because the extra data generate an offset. Due to normalization
before softmax, it behaves similarly to an increased temperature parameter.

We propose solving the problem by providing a way to explicitly mask
the unknown part which should not be used in the query. This is more
general than key-value memory since key-value separation can be controlled
dynamically and does not suffer from the incorrect score problem. We achieve
this by producing a separate mask vector m∗

t ∈ [0 − 1]W by the controller and
multiplying both the query and the memory content by it before comparing
(β is the write query strength controlling the temperature of the softmax and



24 2.2 Method

D(u,v) is the cosine distance (see Eq. 2.4), h is the head):

C(M ,k, β,m) = softmax(D
(
k ⊙m,M ⊙ 1m⊤)β

)
(2.1)

cwt = C (Mt−1,k
w
t , β

w
t ,m

w
t ) cr,ht = C

(
Mt,k

r,h
t , βr,h

t ,mr,h
t

)
(2.2)

De-allocation and content-based look-up. The DNC tracks the allocation
states of memory cells by so-called usage counters, which are increased on
memory writes and optionally decreased after reads. When allocating mem-
ory, the cell with the lowest usage is chosen. Decreasing is done by element-
wise multiplication with a so-called retention vector (ψt), which is a function
of previous read address distributions (wr,i

t−1) and of scalar gates. The vector ψt

indicates to what extent the current memory should be kept. The problem is
that deallocation affects only the usage counters and not the actual memoryMt.
Memory content plays a central role in both read and write address generation:
the content-based lookup still finds deallocated cells, resulting in memory alias-
ing. Thus, we propose to clear the memory contents by multiplying every cell of
the memory matrixMt with the corresponding element of the retention vector.
Then the memory update equation becomes:

Mt =Mt−1 ⊙ψt1
⊤ ⊙

(
E −ww

t e
⊤
t

)
+ww

t v
⊤
t (2.3)

where ⊙ is the element-wise product, 1 ∈ RN is a vector of ones, E ∈ RN×W is
a matrix of ones. Note that the cosine similarity (used to compare queries with
the memory content) is normalized by the length of the memory content vector,
which would normally cancel the effect of Eq. 2.3. However, in practice, due
to numerical stability, cosine similarity is implemented as

D(u,v) =
u · v

|u||v|+ ϵ
(2.4)

where ϵ is a small constant. In practice, free gates f i
t tend to be almost 1, so ψt

is very close to 0, making the stabilizing constant ϵ dominate the norm of the
erased memory content vector. This will assign a low score to the erased cell in
the content addressing: the memory is removed.

Sharpness of temporal link distributions. With temporal linking, the model
can sequentially read memory cells in the same or reverse order as they were
written. For example, traversing a sequence is possible without content-based
lookup: forward links f i

t can be used to jump to the next cell. Any address



25 2.3 Experiments

distribution can be projected to the next or previous one by multiplying it by a
so-called temporal link matrix (Lt) or its transpose. Lt can be understood as a
continuous adjacency matrix. On every write, all elements of Lt are updated
to the extent controlled by the write address distribution (ww

t ). Links related
to previous writes are weakened; the new links are strengthened. If ww

t is
not one-hot, the order information for all nonzero addresses will be (partially)
replaced inLt with noise from the current write. This is done repeatedly in each
step. Thus, the forward (f i

t ) and backward (bit) distributions of long-term-present
cells are becoming increasingly noisy and flatten out with time. When chaining
multiple reads with temporal links, the new address is generated by repeatedly
multiplying by Lt, making the blurring effect exponentially worse.

We propose introducing a sharpness enhancement step S(d, s) to the gener-
ation of the temporal link distribution. By exponentiating and renormalizing the
distribution, the network can adaptively control the importance of non-dominant
elements. This does not fix the noise accumulation in the link matrix Lt, but
significantly reduces the effect of exponential blurring behavior when following
temporal links, making noise in Lt less harmful.

f i
t = S

(
Ltw

r,i
t−1, s

f,i
t

)
bit = S

(
L⊤

t w
r,i
t−1, s

b,i
t

)
S(d, s)i =

(di)
s∑

j(dj)s
(2.5)

The scales sf,it ∈ R and sb,it ∈ R should be generated by the controller (ŝf,it

and ŝb,it ). The oneplus nonlinearity is used to bound them in the range [0,∞):
sf,it = oneplus(ŝf,it ) and sb,it = oneplus(ŝb,it ).

2.3 Experiments

To analyze the effects of our modifications, we used simple synthetic tasks de-
signed to stress test all critical parts of the DNC while leaving the internal dy-
namics somewhat human-interpretable. These tasks allow us to analyze the
contributions of individual components. We also conducted experiments on
the significantly more complex bAbI dataset [Weston et al., 2016].

We tested several variants of our model. For clarity, we use the following
notation: DNC is the baseline, DNC-D has modified deallocation, DNC-S has
sharpness enhancement, and DNC-M has masking in content-based addressing.
Multiple modifications (D, M, S) can be present simultaneously.

Copy Task. A sequence of length L of random binary vectors of size W is pre-
sented to the network, and the task is to repeat them. After all the inputs are



26 2.3 Experiments

presented, a special token indicates the start of the repeat phase. To solve this
task, the network must remember the sequence, which requires allocating mem-
ory and recalling it. However, this alone does not require memory de-allocation
and reuse. To force the network to demonstrate its deallocation capabilities, N
instances of such data are generated and concatenated. Because the total length
N · L of the sequences exceeds the number of cells in memory, the network
must reuse its memory cells. An example is shown in Fig. 2.3a.

Associative Recall Task. In the associative recall task [Graves et al., 2014] B
blocks of Wb words of size W are presented to the network sequentially, with
special bits indicating the start of each block. After presenting the input to the
network, a special bit indicates the start of the recall phase, where a randomly
chosen block is repeated. The network needs to output the next block in the
sequence.

Key-Value Retrieval Task. The key-value retrieval task demonstrates some prop-
erties of memory masking. L words of size 2W are presented to the network.
The words w are divided into two halves of equal size, w1 and w2. In the first
phase, all the words are presented to the network. After that, the words are
shuffled and the w1 halves are fed to the network, requiring it to complete the
missing part w2. Next, the words are shuffled again, w2 is presented, and the
corresponding w1 has to be completed. The network must be able to query its
memory using either part of the words to complete this task.

2.3.1 The Effect of Modifications

Masking. Fig. 2.2a shows the performance of various models on the associa-
tive recall task. The two models that perform best use memory masking. Mask-
ing also improves the convergence speed. Sharpening negatively affects perfor-
mance on this task (see Sec. 2.3.2 for further discussion).

De-allocation. The authors of the original DNC paper [Graves et al., 2016]
successfully trained the model on the repeat copy task with a small number
of repetitions (N ) and relatively short length (L). We found that increasing N

causes the DNC to fail (see Fig. 2.3a). On the contrary, Fig. 2.3b shows that our
model solves the task perfectly. Its outputs are clean and sharp. Furthermore,
it converges much faster than the baseline DNC, reaching a near-zero loss very
quickly. We hypothesize that the reason for this is the modified de-allocation:



27 2.3 Experiments

(a) Effect of masking on convergence speed

0 5 10 15 20 25 30
i from mr ,1

t [i ]

in
q1

q2

0.2

0.4

0.6

0.8

(b) A sample mask from DNC-M

Figure 2.2: (a) Mean training loss on the associative recall task. The shaded area
shows the ±2σ mark (12 seeds/model). Masking improves convergence speed.
(b) An example read mask of DNC-M on the key-value retrieval task. The y-axis
shows individual time steps, starting from the bottom. Yellow values indicate
parts of the key the network searches for. When the query switches from w1 to
w2, the mask changes accordingly. In the bottom third (in) the input is stored
(look-up is not used). For in the middle third (q1) w1 is presented in random
order and w2 is retrieved. In the last third (q2) w2 is presented in random order
andw1 is retrieved. When the query switches fromw1 tow2, the mask switches
accordingly, as intended.

The network can store the beginning of every sequence with a similar key with-
out causing look-up conflicts, as it is guaranteed that the previously present key
is erased from memory. DNC seems to be able to solve the short version of the
problem by learning to use different keys for every repeat step, which is not a
general solution. This hypothesis, however, is difficult to prove, as neither the
write vector nor the lookup key is easily human-interpretable.

Sharpness enhancement. To analyze the problem of temporal link degrada-
tion after successive updates of the link matrix, we examined the forward and
backward link distributions (f i

t and bit) of the model with modified deallocation
(DNC-D). The forward distribution is shown in Fig. 2.4a. The problem presented
in Sec. 2.2 is clearly visible: the distribution is blurry and the problem becomes
worse with each iteration. Fig. 2.4c shows the read mode (π1

t ) of the same run.
It is clear that only the content-based addressing (middle column) is used. When
the network starts repeating a block, the weight of forward links (last column)
increased only marginally, but as the distribution becomes blurrier, the network
falls back to pure content-based lookup. Probably it is easier for the network to
perform a content-based look-up with a learned counter as a key rather than to
learn to restore the corrupted data from blurry reads. Fig. 2.4b shows the for-



28 2.3 Experiments

0 20 40 60 80
t

in
gt

ou
t

0.0

0.2

0.4

0.6

0.8

1.0

(a) Input, ref output, net output (repeated copy)

0 2000 4000 6000 8000 10000 12000 14000
Number of iterations

0

50

100

150

200

250

300

Lo
ss

DNC
DNC-D
DNC-DS
DNC-MDS

(b) Train loss of repeated copy task

Figure 2.3: (a) Input (top), ground truth (middle), and network output (bottom)
of DNC on a long repeat copy tasks. DNC fails to solve the task; the out-
put is blurry. The problem is especially apparent starting from t = 50. (b)
De-allocation and sharpness enhancement substantially improve convergence
speed. The improvement caused by the masking is marginal, probably because
the model uses temporal links to solve the task.

ward link distributions of the model with sharpness enhancement as suggested
in Sec. 2.2 for the same input. The distribution is much sharper, staying sharp
until the very end of the repeat block. The read mode (π1

t ) for the same run can
be seen in Fig. 2.4d. The network prefers to use the links in this case.

2.3.2 bAbI Experiments

bAbI [Weston et al., 2016] is a synthetic question answering dataset containing
20 different tasks. The data is organized in sequences of sentences called stories.
The tokenization is word-level. When a question mark is encountered, the net-
work must output a single word that represents the answer. A task is considered
solved if the error rate (the number of incorrect answer words divided by the
number of total predictions) decreases below 5%, as usual for this task.

Manually analyzing bAbI tasks suggests that some are difficult to solve in a
single timestep. Consider the sample from task QA16: “Lily is a swan. Bernhard
is a lion. Greg is a swan. Bernhard is white. Brian is a lion. Lily is gray. Julius is
a rhino. Julius is gray. Greg is gray. What color is Brian? A: white” The network
should be able to “think for a while” about the answer: it needs to perform
multiple memory searches to link the clues. This cannot be done in parallel as
the result of one query is needed to produce the key for the next. One solution
would be to use adaptive computation time [Schmidhuber, 2012; Graves, 2016].
However, that would add an additional level of complexity. So, we decided to



29 2.3 Experiments

0 2 4 6 8 10 12 14
cell index

0

20

40

60

t

0.0

0.2

0.4

0.6

0.8

(a) DNC-D (without sharpness enhancement)

0 2 4 6 8 10 12 14
cell index

0

20

40

60

t

0.2

0.4

0.6

0.8

(b) DNC-DS (with sharpness enhancement)

backward content forward
read mode

0

50

t

0.25
0.50
0.75

(c) DNC-D (without sharpness enhancement)

backward content forward
read mode

0

50

t

0.25
0.50
0.75

(d) DNC-DS (with sharpness enhancement)

Figure 2.4: (a), (b) Example forward link distribution on the copy task with 3
repeated blocks. Each row is an address distribution across all memory cells.
Yellow cells indicate memory cells taking part in the read operation, while blue
cells are ignored. (a) DNC-D: without sharpness enhancement the distributions
are blurry, rarely having peaks near 1.0. The problem becomes worse over time.
Note that only t ∈ [9, 18], [34, 46] and [54, 62] are memory reads, the other parts
store the input, where nomeaningful read distribution is expected. (b) Sharpness
enhancement (DNC-DS) makes the distribution sharp during the read, peaking
near 1.0. Note that (a) and (b) have identical input data. (c), (d) The π1

t distri-
bution for (a) and (b). Columns are the weighting of the backward links, the
content-based lookup, and the forward links, respectively. (c) The forward links
are not used without sharpness enhancement. (d) With sharpness enhancement,
the forward links are used for every block.

insert T = 3 thinking steps before reading the answer—a difference from what
was done previously [Graves et al., 2016]. We also use a word embedding
layer, instead of one-hot input representation, as is typical for NLP tasks. The
embedding layer is a learnable lookup table that transforms word indices to a
learnable vector of length E.

In Tab. 2.1, we present the experimental results of our modifications after
0.5M training iterations with batch size 2. The performance of the original DNC
[Graves et al., 2016] is also shown (column “Graves et al”). Our best-performing
model (DNC-MD) reduces the mean error rate by 43%, while also having a lower
variance. This model does not use sharpness enhancement, which penalizes
mean performance by only 1.5% absolute. We hypothesize that this is due to
the nature of the task, which rarely needs step-to-step transversal of words but



30 2.4 Conclusion

requires many content-based look-ups. When following the path of an object,
many words and even sentences might be irrelevant between the clues, so the
sequential linking in the order of writing is of little to no use. Compare this
to the work of Franke et al. [2018], where the authors completely removed the
temporal linking for bAbI. However, we argue that for other types of tasks, link
distribution sharpening might be crucial (see Fig. 2.3b, where sharpening helps
and masking does not).

The mean test error curves are shown in Fig. 2.5. Our models converge
faster and have both lower error and lower variance than DNC. (Note that our
goal was not to achieve state-of-the-art performance at the time [Santoro et al.,
2017; Henaff et al., 2017; Dehghani et al., 2019] on bAbI. It was to exhibit and
overcome certain shortcomings of the DNC.)

0 100000 200000 300000 400000 500000
Number of iterations

10

20

30

40

M
ea

n
te

st
er

ro
r[

%
]

DNC-MD
DNC-MDS
DNC
DNC-DS
DNC-MS

Figure 2.5: Mean test error of various models during the training. The shadowed
area shows ±2σ.

2.4 Conclusion

We identified three drawbacks of the traditional DNC model and proposed fixes
for them. Two of them are related to content-based addressing: (1) Lack of key-
value separation yields uncertain and noisy address distributions resulting from
content-based look-up. Wemitigate this problemwith a special maskingmethod.



31 2.4 Conclusion

Ta
sk

D
N
C

(o
ur

s)
D

N
C
-M

D
S

D
N
C
-D

S
D

N
C
-M

S
D

N
C
-M

D
G

ra
ve

s
et

al

1
2.
5
±

4.
4

0.
4
±
1.
2

0.
7
±
1.
6

0.
0
±

0.
1

0
.0

±
0
.0

9.
0
±

12
.6

2
29
.0
±
19
.4

8.
6
±
10
.1

18
.6
±
15
.1

7.
8
±

5.
9

6
.9

±
4
.7

39
.2
±

20
.5

3
32
.3
±
14
.7

10
.8
±
9.
5

16
.9
±
13
.0

7
.9

±
7
.8

12
.4
±

5.
1

39
.6
±

16
.4

4
0
.8

±
1
.5

0.
8
±
1.
5

6.
4
±
10
.0

0.
8
±

1.
0

0
.1

±
0
.2

0.
4
±

0.
7

5
1.
5
±
0.
6

1.
6
±
1.
0

1
.3

±
0
.5

1.
7
±

1.
1

1.
3
±

0.
7

1.
5
±

1.
0

6
5.
2
±
6.
8

1.
1
±
2.
1

2.
4
±
3.
8

0
.0

±
0
.1

0.
1
±

0.
1

6.
9
±

7.
5

7
8.
8
±
5.
8

3.
4
±
2.
3

7.
6
±
5.
1

2
.5

±
2
.0

3.
0
±

5.
0

9.
8
±

7.
0

8
11
.6
±
9.
4

4.
6
±
4.
5

10
.9
±
7.
9

1
.8

±
1
.6

2.
5
±

2.
1

5.
5
±

5.
9

9
4.
5
±
5.
8

0.
8
±
1.
9

2.
0
±
3.
3

0
.1

±
0
.2

0
.1

±
0
.2

7.
7
±

8.
3

10
9.
1
±
11
.5

2.
6
±
3.
9

4.
1
±
5.
9

0.
6
±

0.
6

0
.5

±
0
.5

9.
6
±

11
.4

11
11
.6
±
9.
4

0.
1
±
0.
1

0.
1
±
0.
2

0
.0

±
0
.0

0
.0

±
0
.0

3.
3
±

5.
7

12
1.
1
±
0.
8

0
.2

±
0
.2

0.
5
±

0.
4

0.
3
±

0.
4

0
.2

±
0
.2

5.
0
±

6.
3

13
1.
1
±
0.
8

0
.1

±
0
.1

0.
2
±

0.
2

0.
2
±

0.
2

0
.1

±
0
.1

3.
1
±

3.
6

14
24
.8
±
22
.5

8.
0
±
13
.1

20
.0
±
19
.4

1.
8
±

0.
9

2
.0

±
1
.6

11
.0
±

7.
5

15
40
.8
±
1.
4

26
.3
±
20
.7

42
.1
±
6.
3

33
.0
±

15
.1

2
3
.6

±
1
8
.6

27
.2
±

20
.1

16
5
3
.1

±
1
.2

54
.5
±
1.
8

53
.5
±
1.
4

53
.2
±

2.
3

53
.9
±

1.
2

53
.6
±

1.
9

17
3
7
.8

±
2
.5

39
.9
±
3.
2

40
.1
±
2.
0

41
.2
±

3.
0

39
.8
±

1.
2

32
.4
±

8.
0

18
7.
0
±
3.
0

6.
3
±

4.
1

9.
4
±
0.
9

3.
3
±

2.
2

2
.0

±
2
.6

4.
2
±

1.
8

19
67
.6
±
8.
6

48
.6
±

32
.8

67
.6
±
7.
9

48
.1
±

26
.7

4
0
.7

±
3
4
.9

64
.6
±

37
.4

20
0
.0

±
0
.0

0.
9
±

0.
9

1.
5
±
1.
0

5.
3
±

12
.5

0.
1
±

0.
1

0.
0
±

0.
1

m
ea

n
16
.9
±

5.
2

11
.0
±

3.
8

15
.3
±
3.
5

10
.5
±

1.
9

9
.5

±
1
.6

16
.7
±

7.
6

Ta
bl

e
2.

1:
bA

bI
er

ro
rr

at
es

of
di

ffe
re

nt
m

od
el
s
af

te
r0

.5
M

ite
ra

tio
ns

of
tra

in
in

g
[%

]



32 2.4 Conclusion

(2) De-allocation results in memory aliasing. We fix this by erasing the memory
contents in parallel to decreasing usage counters. (3) We try to avoid blurring
the temporal linkage address distributions by sharpening the distributions.

We experimentally analyzed the effect of each novel modification on syn-
thetic algorithmic tasks. Our models achieved convergence speed-ups on all
of them. In particular, modified de-allocation and masking in content-based
look-up helped in every experiment we performed. The presence of sharpness
enhancement should be treated as a hyperparameter as it benefits some, but
not all, tasks. Unlike DNC, DNC+MDS solves the long repeated copy task.
DNC-MD improves the mean error rate on bAbI by 43%. The modifications are
easy to implement, add only a few trainable parameters, and barely affect the
execution time.



Chapter 3

Inspecting the Implicit Modularity of
Neural Networks1

Modularity provides an intuitive way to achieve compositionality, which ap-
pears to be essential for systematic generalization. Explicitly modular NNs tend
to significantly improve generalization [Clune et al., 2013; Andreas et al., 2016;
Kirsch et al., 2018; Chang et al., 2019; Bahdanau et al., 2019b; Goyal et al.,
2021b]. Previous work showed that NNs are clusterable [Watanabe, 2019; Fi-
lan et al., 2020], but not if these clusters correspond to functionally meaningful
modules that support compositionality. The emergence of such functional mod-
ules would show that NNs have a natural tendency towards breaking down the
problem into subproblems and learning a modular solution.

In this work, we contribute new insights into the generalization capabilities
of popular neural networks by investigating whether modules implementing
specific functionality emerge and to what extent they enable compositionality.
This calls for a functional definition of modules, which has not been studied
previously in prior work. In particular, we consider functional modules
given by subsets of weights (i.e. subnetworks) responsible for performing a
specific ‘target functionality’, such as solving a subtask of the original task. By
associating modules with performing a specific function, they become easier to
interpret. Moreover, depending on the target functionality chosen, modules at
multiple different levels of granularity can be considered.

To unveil whether a NN has learned to acquire functional modules, we pro-
pose a novel analysis tool that works on pre-trained NNs. Given an auxiliary
task corresponding to a particular target function of interest (e.g., train only on a

1For the full paper please see our work “Are Neural Nets Modular? Inspecting Functional
Modularity Through Differentiable Weight Masks” [Csordás et al., 2021]

33



34

specific subset of the samples from the original dataset), we train probabilistic,
binary, but differentiable masks for all weights (while the NN’s weights remain
frozen). The result is a binary mask that unveils the module necessary to per-
form the target function. Our approach is simple yet general, which readily
enables us to analyze several popular NN architectures on a variety of tasks in
this way, including recurrent NNs (RNNs), Transformers [Vaswani et al., 2017],
feedforward NNs (FNNs) and convolutional NNs (CNNs).

To investigate whether the discovered functional modules are part of a com-
positional solution, we analyze whether the NN has the following two desirable
properties: (Pspecialize) it uses different modules for very different functions, and
(Preuse) it uses the same module for identical functions that may have to be per-
formed multiple times2. Here, we treat Pspecialize and Preuse as continuous quanti-
ties, which lets us focus on the degree to which functional modularity emerges.
Furthermore, since for many tasks it is unclear what precise amount of sharing is
desirable, we will measure Pspecialize and Preuse by considering the change in per-
formance as a result of applying different masks corresponding to a target func-
tion. This yields an easy-to-interpret metric that does not assume precise knowl-
edge about the desired level of weight sharing. We experimentally show that
many typical NNs exhibit Pspecialize but not Preuse. By additionally analyzing the
capacity for transfer learning, we provide further insight into this issue. We offer
a possible explanation: While simple data routing between modules in standard
NNs is often highly desirable, it requires learning a special structure that is hard
to separate out from the desired transformation induced by the loss. Indeed,
our findings suggest that standard NNs have no bias towards separating these
conceptually different goals of data transformation and information routing.

We also demonstrate how the functional modules discovered by typical
NNs do not tend to encourage compositional solutions. For example, we
analyze encoder-decoder LSTMs [Hochreiter and Schmidhuber, 1997] and
Transformers [Vaswani et al., 2017] on the SCAN dataset [Lake and Baroni,
2018] designed to test systematic generalization based on textual commands.
We show that combination-specific weights are learned to deal with certain
command combinations, even when they are governed by the same rules as the
other combinations. The existence of such weights indicates that the learned

2We emphasize the distinction between the ability to reuse modules and the ability to com-
pose them: a compositional solution may fail to reuse a module to implement the same be-
havior multiple times. Similarly, weights can be reused without being composed to yield a
compositional solution. Furthermore, we consider specialization of modules a special case of
modularization where modules are specialized to implement a particular functionality that is
semantically meaningful.



35 3.1 Discovering Modules via Weight-Level Introspection

solution is non-compositional and fails at performing the more symbolic ma-
nipulation required for systematic generalization on SCAN. To demonstrate that
this issue is present even in more real-world scenarios, we highlight identical
behavior on the challenging Mathematics Dataset [Saxton et al., 2019].

Finally, we study whether functional modules emerge in CNNs trained for
image classification, which are thought to rely heavily on shared features. Sur-
prisingly, we can identify subsets of weights solely responsible for single classes:
when removing these weights the performance on its class drops significantly.
By analyzing the resulting confusion matrices, we identify classes relying on
similar features.

3.1 Discovering Modules via Weight-Level Introspec-
tion

To investigate whether functional modules emerge in neural networks, one must
perform a weight-level analysis. This precludes the use of existing methods,
which discover the modular structure in NNs based on the clustering of indi-
vidual units according to their similarity [Watanabe, 2019; Filan et al., 2020]
and that may not always be enough to draw meaningful conclusions. Units can
be shared even when their weights, which perform the actual computation, are
not. Indeed, units can be viewed as mere “wires” for transmitting information.
Consider, for example, a gated RNN, such as an LSTM, where gates can be
controlled either by the inputs or the state, yet it makes use of different weights
to project to the same gating units. To overcome this limitation, we propose a
novel method to inspect pre-trained NNs at the level of individual weights. It
works as follows. First, we formulate a target task corresponding to the specific
function for which we want to investigate if a module has been learned. For ex-
ample, this can be a subset of the original problem (i.e. a subtask), or based on a
particular dataset split, e.g. to test generalization. Next, we train a weight mask
on this target task while keeping the weights themselves frozen. The resulting
mask then reveals the module (subnetwork) responsible for the target task.

To train the mask, we treat all N weights separately from each other. Let
i ∈ [1, N ] denote the weight index. The mask’s probabilities are represented
as learned logits li ∈ R, which are initialized to keep the weights with high
probability (0.9). If continuous masks were applied to the weights, it would be
possible to scale them arbitrarily, potentially modifying the function the network
performs. To prevent this, we binarize masks, which allows only keeping or



36 3.1 Discovering Modules via Weight-Level Introspection

removing individual weights. Binarization is achieved using a Gumbel-Sigmoid
with a straight-through estimator, which we derive from the Gumbel-Softmax
[Jang et al., 2017; Maddison et al., 2017] in Appendix B.1.1. A sample si ∈ [0, 1]

from the mask can be drawn as follows:

si = σ ((li − log (logU1/ logU2)) /τ) with U1, U2 ∼ U(0, 1), (3.1)

where τ ∈ (0,∞) is the temperature and σ(x) = 1
1+e−x is the sigmoid func-

tion. Next, we can use a straight-through estimator [Hinton, 2012; Bengio et al.,
2013b] to obtain a binarized sample bi ∈ {0, 1}:

bi = [1si>0.5 − si]stop + si, (3.2)

where 1x is the indicator function and [·]stop is an operator for preventing back-
ward gradient flow. In this case, the bi are samples from a Bernoulli(σ(li))
random variable (proof in Appendix B.1.3). Masks are applied element-wise:
w′

i = wi · bi. Training is done by applying the loss function defined by the target
task and backpropagating [Kelley, 1960; Linnainmaa, 1970; Werbos, 1982] into
logits li. Typically, multiple binary masks (between 4—-8) are sampled and ap-
plied to different parts of a batch to improve the quality of the estimated gradient.

The goal of masking is to remove weights that are not necessary to perform
the target function. Therefore, the logits li should be regularized such that the
probability that the weight wi is active is small unless wi is necessary for the task.
This is achieved by adding a regularization term r = α

∑
i li to the loss, where

α ∈ [0,∞) is a hyperparameter responsible for the strength of the regularization.
How to best choose α is described in detail in Appendix B.3.3. At the end of
the training process, deterministic binary masks Mi ∈ {0, 1} for weights i are
obtained via thresholding Mi = 1σ(li)>0.5

3. Applying the full mask M then un-
covers the module responsible for the target task. A preliminary study confirmed
that the mask training process is stable and therefore suitable for inspection (Ap-
pendix B.2.1).

In the following sections, we will analyze several standard NNs using this
technique of mask-training45. Throughout our experiments, we will avoid draw-
ing conclusions based on the measured amount of sharing alone as much as
possible, since it is unclear what degree of sharing can be expected or is desir-
able. Rather, we will analyze the performance drop caused by removing weights

3In general we find that li concentrates at either 0 or 1 and so thresholding is safe (see also
Fig. B.3).

4A complete overview of all experimental details is available in Appendix B.3. The mean
and standard deviations shown in the figures are calculated over 10 runs unless otherwise noted.

5Code for all experiments is available at https://github.com/robertcsordas/modules.

https://github.com/robertcsordas/modules


37 3.2 Analyzing Fundamental Properties of Modules

corresponding to certain functionality, which offers a more consistent and easier-
to-interpret metric6. For example, to show that a module is responsible for a par-
ticular subtask (A) but not for another (B), we train masks on A and test on both.
A performance drop is expected on task B only. In contrast, to show that this
module is exclusively needed for a particular subtask, we can invert the masks
and test on both tasks. The inverted masks are expected to perform well on the
complementary task, but not on the original one. However, we note that this
mask inversion method is limited to analyzing entirely disjoint weights.

We analyze weight sharing between two tasks using two different metrics:
one is Intersection over Union (IoU), which measures how much the weights
used for solving the tasks overlap. The other is the Szymkiewicz-Simpson coef-
ficient (also known as the “Overlap coefficient”). This coefficient measures the
number of overlapping weights (intersection) divided by the minimum of the
total number of weights used for each task. For consistency with IoU, we call
this metric Intersection over Minimum (IoMin). Intuitively, IoMin is a measure
of “subsetness”. If no weights are shared, both IoU and IoMin are zero. If all
weights are shared, both IoU and IoMin are one. However, when the weights
needed for one task are a strict subset of the other, then IoMin is one, while
IoU < 1.

3.2 Analyzing Fundamental Properties of Modules

Let us consider Pspecialize and Preuse (defined in Sec. 3) in more detail, as they
reflect the advantages of the modular compositional design. According to
our notion of functional modularity, an NN is not modular without Pspecialize.
Moreover, disjoint modules prevent catastrophic interference [McCloskey and
Cohen, 1989; Rosenbaum et al., 2019], since changing the weights responsible
for a specific function does not affect the others. Preuse also has multiple
advantages. It increases data efficiency by processing all relevant data using
the same module, which thus receives additional training when a module can
be reused. It also helps with generalization. For example, consider processing
the expressions a ∗ b and (c + d) ∗ e where a, b, c and d are sampled from the
same range. By reusing the multiplier, it will be able to perform a ∗ b on a wider
range of inputs than it would otherwise be trained for.

In this section, we conduct several experiments using synthetic datasets

6Exceptions only include cases where the observed amount of weight sharing can be clearly
interpreted. However, even in these cases, our analysis will focus on general trends rather than
the precise amounts observed.



38 3.2 Analyzing Fundamental Properties of Modules

to test whether NNs have a natural inductive bias supporting Pspecialize and
Preuse. These experiments are designed to be as simple as possible to isolate
the property of interest. Let’s assume the network consists of compositional
modules. The input of such modules can come from multiple sources within
the network. Similarly, their output could be connected to different parts of the
network. For example, in the previous arithmetic expression, the first operand
of the multiplier can come directly from the input or the output of the adder.
The same holds for the outputs. Therefore, we consider cases where the inputs
and outputs are shared between the modules of the ideal solution (shared I/O)
and where they are separated (separate I/O).

We construct two different datasets for analyzing Pspecialize and Preuse. For
Pspecialize, we use shared I/O and two different target functions (addition/multi-
plication task in Sec. 3.2.1). The shared I/O biases the network towards weight
sharing by default. Thus, we use this dataset to test whether there is a bias to
specialize different computations (functions) to separate weights. In contrast,
to test for Preuse, we construct a dataset where the same function should be
performed twice, but using separate I/O (double addition task in Sec. 3.2.2).
Since separate I/O biases the network to not share weights at initialization time,
we will make use of this dataset to test whether NNs exhibit a bias for reusing
computation. Here reusing weights is expected since information routing is
assumed to be easier to learn than the actual function (addition). We empha-
size that this initial bias due to different choices for I/O arises naturally in any
network composing multiple different internal modules to arrive at a solution.

The conclusions are surprising: typical NNs tend to satisfy Pspecialize but not
Preuse. Our experiments suggest that weight sharing across tasks is mostly driven
by shared I/O rather than task similarity, resulting in redundancies and lack of
data efficiency.

3.2.1 Addition/Multiplication Experiments

The addition/multiplication dataset is designed to test Pspecialize. The task is to
add or multiply numbers (modulo 100). The input and output units are the
same for both operations. An additional one-hot input specifies the operation.
The numbers are two-digit and encoded as two 10-way one-hot vectors, each
representing a digit. Thus, the total input is 42-dimensional and the output is 20.

First, we train the network to perform this task without any masking. Once
the performance is nearly perfect, we freeze its weights. We perform two stages
of mask training: first, we train a mask on addition (multiplication examples
excluded), then we repeat this procedure for multiplication.



39 3.2 Analyzing Fundamental Properties of Modules

layer 1 layer 2 layer 3 layer 4 output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU IoMin

lstm 0 hh lstm 0 ih lstm 1 hh lstm 1 ih output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU IoMin

Figure 3.1: Proportion of shared weights per layer on addition/multiplication.
Left: FNN, right: LSTM.

We analyze FNN and LSTM on this task. For LSTM, we present the full input
for a fixed number of timesteps. The result is the output at the final step. No
loss is applied in intermediate steps. Regardless of the architecture, we found the
same general tendencies: There is more sharing in the input and output layers
and less in the hidden layers (Fig. 3.1). We also found that the multiplication
uses 3.8 times more weights than the addition (Fig. B.6), which partially ex-
plains the low IoU in this case. We conclude that there does appear to be some
bias towards specializing weights according to different functions. However,
the separation might still be inadequate to prevent interference and catastrophic
forgetting. Increased sharing in I/O layers could be due to a switching/routing
procedure used to select which operation to perform.

We also analyze how performance breaks down on the task for which the
mask was not trained on. Here, the behavior of the FNN and the RNN differ.
The FNN tends to ignore the function description and performs the operation
for which the mask was trained, while the LSTM tends to produce invalid
outputs, suggesting that it learned a solution where the two operations are
more intertwined (Fig. 3.2).

3.2.2 Double-Addition Experiments

The double-addition experiment is designed to test property Preuse. The task is
to perform modulo 100 addition twice using separate I/O (different units) for
each of the two instances. Using the inputs a, b, c and d, the network should
output a + b and c + d. This simulates the realistic scenario of having different
data sources within a network when composing modules dynamically, without
considering the additional problem of finding the right composition. Since the
operation is the same and the operands’ data distributions are exact matches,
this simple setup encourages sharing. The encoding is the same as in Sec. 3.2.1,
resulting in 80 input and 40 output units.



40 3.2 Analyzing Fundamental Properties of Modules

+ ∗ none
Predicted

+
∗Tr

ue 99± 0 1± 0 0± 0
0± 0 100± 0 0± 0

0

100

(a) FNN: Mask trained on + and ∗

+ ∗ none
Predicted

+
∗Tr

ue 99± 0 1± 0 0± 0
99± 2 0± 0 1± 2

0

100

(b) FNN: Mask trained on +

+ ∗ none
Predicted

+
∗Tr

ue 1± 0 98± 3 2± 3
0± 0 100± 0 0± 0

0

100

(c) FNN: Mask trained on ∗

+ ∗ none
Predicted

+
∗Tr

ue 99± 0 1± 0 0± 0
0± 0 99± 0 0± 0

0

100

(d) LSTM: Mask trained on + and ∗

+ ∗ none
Predicted

+
∗Tr

ue 99± 0 1± 0 0± 0
21± 8 3± 1 75± 8

0

100

(e) LSTM: Mask trained on +

+ ∗ none
Predicted

+
∗Tr

ue 2± 1 28± 4 70± 4
0± 0 100± 0 0± 0

0

100

(f) LSTM: Mask trained on ∗

Figure 3.2: Analysis of FNN (a, b, c) and LSTM (d, e, f) performance degrada-
tion on the addition/ multiplication task. The y-axis shows the target operation.
The x-axis shows the actual operation performed. “none” means the predicted
number is neither the result of addition nor multiplication. The FNN ignores
the operator specification and performs the one corresponding to the mask; in
contrast, the LSTM tends to perform invalid operations.

Full Pair 1 ¬Pair 1 Pair 2 ¬Pair 2

FNN
Pair 1 100± 0.0 100± 0.0 20± 12.7 1± 0.1 92± 10.5

Pair 2 100± 0.0 1± 0.1 94± 6.7 100± 0.0 21± 11.0

LSTM
Pair 1 100± 0.0 100± 0.0 2± 0.5 1± 0.1 99± 3.0

Pair 2 100± 0.0 1± 0.1 100± 0.2 100± 0.0 2± 0.3

LSTM (forced)
Pair 1 100± 0.0 100± 0.0 4± 0.8 1± 0.1 99± 0.7

Pair 2 100± 0.1 1± 0.1 96± 4.1 100± 0.0 3± 0.6

Table 3.1: Double-addition task: accuracy [%] of LSTMs and FNN on the two
pairs. In case of LSTM (forced) only one input is presented at a time (to prevent
interference). The header shows on which pair the mask was trained on. ¬
denotes an inverted mask.



41 3.2 Analyzing Fundamental Properties of Modules

layer 1 layer 2 layer 3 layer 4 output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU

IoMin

(a) FNN

lstm 0 ih lstm 0 hh lstm 1 ih lstm 1 hh output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU

IoMin

(b) LSTM

Figure 3.3: Double addition task: proportion of weights shared per operation in
case of (a) feedforward network, (b) LSTM, both inputs presented together. The
first and last layers have no shared weights.

We first train the network until convergence on the full task, then freeze
its weights. We train a mask on a + b, followed by c + d. We analyze both
FNN and LSTM architectures. FNN needs special care to avoid activation
interference. When both operations have to be performed simultaneously,
sharing is impossible. Thus, for the FNN, we perform two forward passes. In
each pass, we feed only one pair of numbers to the network (either a, b or c, d),
while zeroing out the other. With LSTM, we investigate two different settings.
In the first, both pairs are presented together for a fixed number of steps, and
the result is the final output. Therefore, the LSTM is allowed to schedule the
execution of the operations freely. In the second setting, called LSTM (forced),
we remove any incentive for solving the pairs simultaneously by feeding a
single pair for multiple steps with the other zeroed out, and then read its output.
This procedure is then repeated for the second pair without resetting the state.

The results of all experiments are consistent: the weight sharing is low
(Fig. 3.3). To assert the modules’ independence, we invert masks trained on
pair 1, removing all weights needed for pair 1. We test the resulting network
on pair 2, where the performance decreases only slightly, suggesting that they
are independent (Tab. 3.1, further analysis is provided in Appendix B.3.5). No
differences were observed between the two LSTM variants.

These observations show that Preuse is violated even in this simple case. Re-
alistic scenarios tend to be more complex, as the data distribution for different
operation instances might be different (with overlaps), providing even fewer in-
centives to share. Furthermore, comparing the results to those of Sec. 3.2.1, it is
apparent that sharing depends more on the location of the inputs/outputs than
on the similarity of the performed operations. This behavior is undesired and
calls for further research.



42 3.2 Analyzing Fundamental Properties of Modules

3.2.3 Transfer Learning Experiments

Let us now consider a more complex setting to assess the degree to which
property Preuse is violated (see Sec. 3.2.2). Here, we will measure the amount
of possible transfer in a continual learning setup using the popular permuted
MNIST benchmark [Kirkpatrick et al., 2017b; Golkar et al., 2019; Kolouri et al.,
2019]. A sequence of tasks is created by applying different permutations to
MNIST images [LeCun et al., 2010]. Spatially close pixels may no longer be
observed in nearby locations in this case, which leads us to train a FNN (as
opposed to a CNN) sequentially on all permutations (tasks).

Continual learning is closely related to transfer learning, which is addition-
ally concerned with transferring knowledge between tasks to improve learning
and use fewer parameters. Typical approaches revolve around freezing used
weights via masking when a new task is added [Fernando et al., 2017; Mallya
and Lazebnik, 2018; Golkar et al., 2019]. We adjust our method accordingly:
We train on a single task and freeze the occupied weights. In particular, to be
able to bias the network towards weight sharing, we train masks and weights
simultaneously in this case. The free weights are then reinitialized, and a new
mask is allocated for the next task to obtain a mask for each permutation.

Note that since each task differs only by the input’s permutation, it suffices
to retrain a new ‘first layer’ to undo the permutation so that later layers can
be reused. Indeed, since a significant portion of the weights is in the hidden
layers, knowledge transfer between the permutations is possible and expected
to be beneficial. However, relearning the first layer may not always be possible
in practice, since the required weights could already have been occupied to
address a previous permutation. To ensure that this does not happen, we
always reset the first layer and do not freeze any of its elements. Notice how,
while this departs from the standard transfer learning setting, it still provides
us with an upper bound on the amount of transfer that is possible when no
such conflict occurs. Even with these modifications, we observed only a small
weight sharing when there was sufficient free space available (Fig. 3.4). Only
once all the capacity is saturated, the weights become shared. This effect is
especially apparent for the output layer.

We also conducted an experiment in which we explicitly bias the network
toward sharing. We initialized elements of new masks corresponding to the
occupied weights with a significantly higher probability (P ≈ 0.88) compared
to the unused ones (P ≈ 0.27). Intuitively, this encourages reusing the old,
frozen network and adds new weights with low probability. This was able to
force the network to share significantly in later layers (see Fig. B.7). However,



43 3.2 Analyzing Fundamental Properties of Modules

Layer 2 Layer 3 Layer 4
0.0

0.5

1.0

P
ro

po
rt

io
n T2

T4
T6
T8

T10

Figure 3.4: Proportion of the weights of a task shared with any of the previous
tasks. Every second task on permuted MNIST. Each task corresponds to a permu-
tation. The last layer has the lowest capacity, filling up first, forcing subsequent
runs to share weights.

we emphasize that knowledge about which weights have to be reused between
which samples is usually not available and therefore explicitly biasing the
network in this way is generally not possible.

Together, these observations reaffirm that Preuse does not emerge naturally
and that the same functionality is re-learned. This is both redundant and
potentially harmful, as we investigate in Sec. 3.3.

3.2.4 A Potential Explanation for Lack of Weight Sharing

Let us consider a possible explanation for the lack of weight-sharing observed in
sections 3.2.2 and 3.2.3, which is that data routing is difficult in standard NNs.
Indeed, inputs and outputs must be correctly routed to different sources/targets
to reuse modules in different compositions. In routing networks [Kirsch et al.,
2018; Rosenbaum et al., 2019; Chang et al., 2019], this is achieved through
hand-designed mechanisms. Without those, routing can only occur through
the weights of the NN. However, such a ‘routing transformation’ would change
the data representation alongside the routing unless the weights have a special
structure that we empirically find is hard to learn. Indeed, our experiments
suggest that NNs find it hard to learn to represent data similarly along different
information routes that can in principle be processed by a single module. We
argue that this is an important issue and that additional research on suitable
inductive biases is needed to address this. A further discussion of the potential
role of attention to mitigate this is provided in Appendix B.2.4.



44 3.3 Analyzing Systematic Generalization on Algorithmic Tasks

Turn Left Jump Length

0

100

A
cc

ur
ac

y
[%

]

(a) Performance on different splits

I TURN LEFT
I TURN RIGHT

I JUMP
I WALK

I RUN
I LOOK

EOS
0

25

R
em

ov
ed

[%
]

(b) Weights removed from last layer on “Add
jump”

Figure 3.5: Results of experiments on SCAN. (a) Test accuracy on split shown
on x-axis with masks trained on the full problem (blue, orange) and with masks
trained on split shown on x-axis (green, red). LSTM: blue, green, Transformer:
orange, red (b) Percentage of weights removed per token from the output layer
of the LSTM decoder trained on the “Add jump” split.

3.3 Analyzing Systematic Generalization on Algorith-
mic Tasks

Let us now consider the known issue of systematic generalization in light of
our previous observations. To be able to combine modules in novel ways Preuse

should hold. The SCAN dataset [Lake and Baroni, 2018] is designed to analyze
the degree to which NNs can generalize systematically. It consists of compo-
sitional commands (e.g. “jump twice”), to be translated into primitive output
moves (e.g. “JUMP JUMP”). The “simple” data split is IID, the “length” split has
shorter training samples than test samples, and the ”add primitive” splits have
a particular command presented in the training set but no compositions of this
command with others (as in the test set).

It was previously shown that typical NNs generalize poorly on data splits
systematically different from the train set [Lake and Baroni, 2018; Saxton et al.,
2019]. However, the root of the problem is unclear. In fact, there might be two
explanations: (a) The NN might have learned the correct algorithm for solving
the problem but failed to pick up on certain symmetries between concepts due
to the scarce evidence in the train set. For example, in the “add primitive” split,
the NN might not be able to form an analogy between the additional primitive
and the well-performing ones. This can also be understood as a representation
problem: in this case, the NN has failed to represent the new primitive in a way
that allows them to be used for problem solving in a similar manner following
the acquired solution. However, the NN is not pressured to improve, since the
learned solution suffices to solve the training set. (b) Alternatively, the NN may



45 3.3 Analyzing Systematic Generalization on Algorithmic Tasks

not have learned the correct algorithm to solve the problem. For example, it may
have learned to recognize patterns determining when an output token should be
produced in place of reusable rules. In this case, new weights are required to
solve new problems of the same kind since they correspond to different pat-
terns. Only in this case, we argue, has the NN failed to leverage the problem’s
compositional nature. Note that (a) requires Preuse to hold so that the weights re-
sponsible for performing each individual operation are shared between different
samples, while (b) does not.

We have tested two networks: the baseline 2 layer LSTM encoder-decoder
model by Lake and Baroni [2018] and a Transformer [Vaswani et al., 2017] (see
Appendix B.3.7). We pretrain the model on the IID data, which ensures that
the learned weights are capable of solving the full problem and that a potential
absence of sufficient evidence for learning about the correct symmetries
between concepts is not an issue. Hence, this rules out explanation (a) being
the only issue. For each split, we train a mask on its train set and measure
the discovered subnetwork’s performance on the corresponding systematically
different test set. This process removes the weights that are not required to
solve the train set for a given split. However, all splits’ train sets contain
sufficient information about the full set of rules required to perform well on
any split. Hence, if the masking process removes any important weights,
then we argue that the solution is likely pattern-recognition-like rather than
based on reusable rules, providing evidence for explanation (b). Indeed, our
experimental results demonstrate precisely this behavior, as can be seen from
the large generalization gap in Fig. 3.5a. Note that while this gap is consistent
with the findings of Lake and Baroni [2018], we are additionally able to provide
evidence that the learned algorithm is likely inherently non-compositional, i.e.
by eliminating explanation (a) being the only issue as a possibility.

To assess if the same behavior can be observed in a more complex setting, we
conduct a similar experiment on the challenging Mathematics Dataset [Saxton
et al., 2019]. Here, we generated difficulty-based splits for tasks like differenti-
ation, solving linear equations, sorting, etc. (further details in Appendix B.3.7).
In Fig. 3.6 a consistent performance drop can be observed when applying the
inferred subnetwork on the “hard” split using a mask trained on the “easy” split.
This demonstrates that samples in the “hard” split depend on exclusive weights,
despite those being governed by the same underlying rules, which is consistent
with the results on SCAN.

The weight level analysis provided by our method enables us to gain
further insight. We inspect the LSTM decoder’s weights on the “add jump”
split of SCAN and note that the most apparent difference is in the output layer.



46 3.4 Analyzing Convolutional Neural Networks

Add or sub
Linear 1D

Differentiate
Sort

Poly. Collect
0

100

A
cc

ur
ac

y
[%

]
Figure 3.6: Accuracy on the “hard” test set of different tasks of the Mathematics
Dataset: model without masks, masks trained on IID data and masks trained on
“easy” set. A performance drop can be observed, because of the sample-specific
weights. 5 seeds/task.

Almost half of the weights corresponding to “I_JUMP” are removed (Fig. 3.5b),
suggesting that the network learned to detect patterns of cases when “I_JUMP”
should be the output, and the last layer puzzles them together. In contrast,
we hypothesize that the generalizing algorithm for solving such problems
necessitates proper variable manipulation [Garnelo and Shanahan, 2019].

3.4 Analyzing Convolutional Neural Networks

As a final case study, we consider whether we are also able to observe a lack
of weight-sharing in CNNs. By conducting a weight-level analysis using our
tool, we are able to highlight sets of non-shared weights solely responsible for
individual classes. We consider multiple CNN architectures trained on CIFAR10
[Krizhevsky et al., 2009]: a simple CNN with dropout (an ablation is provided
in Appendix B.3.8) and a ResNet-110 [He et al., 2016] (based on the Highway
Net [Srivastava et al., 2015b]). Full details are available in Appendix B.3.8).
We proceed as follows. First, we train a ‘control mask’ on the full dataset to
highlight all used weights. Next, we train a mask with a single class removed so
that the weights solely responsible for this class will be absent from the resulting
mask. Here, we avoid removing all weights responsible for the this class from
the output layer (leaving no connection to the corresponding output unit) by
fixing its mask to one trained on the full dataset. This corresponds to inspecting
the feature detector layers as opposed to the classifier. We repeat this process
for all classes to obtain a total of 11 masks.

We compute the confusion matrix on the full validation set at the end of
each stage. Then we calculate the difference between the confusion matrices
with and without the removed class, which unveils how the removal changes
the classification. Interestingly, the performance of the target class drops signif-



47 3.5 Related Work

airplane
automobile

bird
cat

deer
dog

frog
horse

ship
truck

0

50

100

R
el

at
iv

e
dr

op
[%

]

(a) Relative performance drop per class

airplane
automobile

bird
cat

deer
dog

frog
horse

ship
truck

0.0

2.5

5.0

7.5

10.0

La
rg

es
to

th
er

/ta
rg

et
[%

]

(b) Largest drop in non-target class (relative)

Figure 3.7: (a) Relative drop in performance for simple CNN, simple CNN with-
out dropout and ResNet-110. (b) Largest performance drop in a non-target class
relative to the drop in the target class.

icantly (Fig. 3.7a), only a small drop in performance (possibly due noise when
mask sampling) is observed for non-target classes (Fig. 3.7b). This indicates a
large dependence on class-exclusive, non-sharedweights in the feature detectors.
These findings, which assume that the network has sufficient capacity relative to
dataset size, are in line with those observed in Sec. 3.2–3.3. Analyzing the dif-
ference in misclassification rates yields further insight: As the true positive rate
drops, certain other classes are predicted instead that appear to rely on similar
shared features. For example, removing “airplane” causes images to be classi-
fied as “birds” and “ships” instead, which have a blue background in common.
Additional insights are reported for other classes in Fig. B.11 in Appendix B.3.8.

3.5 Related Work

There have been few other attempts at analyzing emerging modularity in NNs.
Filan et al. [2020] identifies groups of neurons with strong internal and weak
external connectivity via clustering, while others group neurons based on their
connectivity pattern [Watanabe et al., 2018] or cluster them hierarchically
based on activation statistics [Watanabe, 2019]. However, as we have argued,
without considering the contribution of individual weights it is not always
possible to reason about functional modularity. Davis et al. [2020] considers an
alternative approach based on mutual information to detect salient pathways in
NNs that could in principle allow for this. However, the discovered pathways
are not grounded with respect to particular functionality, nor is it analyzed
whether they support compositionality. Bengio et al. [2015] formulate adaptive
mask learning as a reinforcement learning problem, with the main goal of
accelerating inference via conditional execution. However, the masking is



48 3.6 Conclusion

unit-level and trained together with network weights. Similarly, functional
modularity is not considered.

Finally, we note that many transfer and continual learning methods make
use of weight freezing via masking to prevent catastrophic forgetting [Fernando
et al., 2017; Mallya and Lazebnik, 2018; Golkar et al., 2019; Yang et al., 2020].
Determining the importance of individual weights has been studied in network
pruning [LeCun et al., 1989; Hassibi and Stork, 1992; Li et al., 2017; Frankle
and Carbin, 2019; Gaier and Ha, 2019] and feature attribution [Simonyan et al.,
2013; Springenberg et al., 2015; Sundararajan et al., 2017; Shrikumar et al.,
2017] often using weight and/or gradients magnitudes. Differentiable binary
weight masks have also been explored in the multitask setting [Mallya et al.,
2018], albeit deterministically in contrast to the Gumbel-Sigmoid used here.
It should also be mentioned how many explicitly modular architectures have
been proposed to improve generalization [Clune et al., 2014; Andreas et al.,
2016; Kirsch et al., 2018; Chang et al., 2019; Goyal et al., 2021b] and data
efficiency [Purushwalkam et al., 2019]. Rather than engineering an explicitly
modular solution, our goal is to let this emerge naturally. We believe that our
current findings help take a step in that direction.

3.6 Conclusion

Our new method for inspecting modularity in neural networks is the first to
identify modules by their functionality. It is a powerful tool for analyzing how
the NNs share or separate weights based on the performed computation. By
analyzing diverse sets of neural networks (FNNs, CNNs, RNNs, Transformers),
we could draw significant novel conclusions: In typical current NNs, weight
sharing between modules does not reflect task similarity (as desired) but
can mostly be explained by rather trivial shared I/O interfaces of solution-
implementing modules. The lack of weight sharing between multiple uses
of the same function makes the learning data inefficient since it has to be
relearned repeatedly. Moreover, NNs trained on algorithmic tasks appear to fail
to learn general, modular, compositional algorithms. Rather, we have shown
that they require specific subset weights to solve a particular combination of
the input tokens, even when the same rules govern both the solution and the
other samples. Our discoveries call for future research: function-dependent
weight sharing in the neural networks should vastly improve data efficiency,
and encouraging algorithmic solutions should improve generalization.



Chapter 4

Improving the Systematic
Generalization of Transformers1

We already hinted in Sec. 1.3.1 that the structure of transformers seems to be
well suited for generalization on algorithmic tasks. Additionally, the computa-
tion graph or a parse tree of the problem can be mapped to the columns of
the transformer. On the contrary, in recently proposed works, including PCFG
[Hupkes et al., 2020] and COGS [Kim and Linzen, 2020], baseline transformer
models are typically shown to fail dramatically. However, the configurations of
these baseline models are questionable. In most cases, standard practices from
machine translation are applied without adaptation. Furthermore, some exist-
ing techniques relevant to the problem, such as relative positional embedding
[Shaw et al., 2018a; Dai et al., 2019], are typically not included in the baseline.

In order to develop and evaluate methods to improve systematic generaliza-
tion, it is necessary to have not only good datasets but also strong baselines to
correctly evaluate the limits of existing architectures and to avoid a false sense
of progress over bad baselines. In this work, we demonstrate that the capabil-
ity of transformers [Vaswani et al., 2017] and, in particular, its universal variants
[Dehghani et al., 2019] on these tasks are largely underestimated. We show that
careful designs of model and training configurations are particularly important
for these reasoning tasks testing systematic generalization. Guided by the intu-
ition presented in Sec. 1.3, we revisit configurations such as layer sharing, rela-
tive positional embedding, basic scaling of the word and positional embeddings,
and early stopping strategy, drastically improving the performance of the base-
line transformers. We conduct experiments on five datasets: SCAN [Lake and

1For the full paper please see our work “The Devil is in the Detail: Simple Tricks Improve
Systematic Generalization of Transformers” [Csordás et al., 2021]

49



50 4.1 Datasets and Model Architectures for Systematic Generalization

Baroni, 2018], CFQ [Keysers et al., 2020], PCFG [Hupkes et al., 2020], COGS
[Kim and Linzen, 2020], and Mathematic dataset [Saxton et al., 2019]. In partic-
ular, our new models improve the accuracy on the PCFG productivity split from
50% to 85%, on the systematicity split from 72% to 96%, and on COGS from
35% to 81% over existing baselines. On the SCAN dataset, we show that our
models with relative positional embedding largely mitigate the so-called end-
of-sentence (EOS) decision problem [Newman et al., 2020], achieving 100%
accuracy on the length split with a cutoff at 26.

Also importantly, we show that despite these dramatic performance gaps,
all these models perform equally well on IID validation datasets. The conse-
quence of this observation is the need for proper generalization validation sets
for developing neural networks for systematic generalization.

We thoroughly discuss guidelines that empirically yield good performance
across various datasets, and we release the code2 to make our results repro-
ducible.

4.1 Datasets and Model Architectures for Systematic
Generalization

Here we describe the five datasets and specify the transformer model variants
we use in our experiments. The selected datasets include both the already
popular ones and the recently proposed ones. The statistics of the datasets can
be found in Tab. C.7 in the appendix.

4.1.1 Datasets

Many datasets in the language domain have been proposed to test system-
atic generalization. All datasets that we consider here can be formulated as
a sequence-to-sequence mapping task [Sutskever et al., 2014; Graves, 2012].
Common to all these datasets, the test set is sampled from a distribution which
is systematically different from the one for training: for example, the test set
might systematically contain longer sequences, new combinations, or deeper
compositions of known rules. We call this split the generalization split. Most of
the datasets also comewith a conventional split, where the train and test (and val-
idation, if available) sets are independently and identically distributed samples.
We call this the IID split. In this paper, we consider the following five datasets:

2https://github.com/robertcsordas/transformer_generalization

https://github.com/robertcsordas/transformer_generalization


51 4.1 Datasets and Model Architectures for Systematic Generalization

SCAN [Lake and Baroni, 2018]. The task consists of mapping a sentence in
natural language into a sequence of commands simulating navigation in a grid
world. The commands are compositional: e.g. an input jump twice should be
translated to JUMP JUMP. It comes with multiple data splits: in addition to the
“simple” IID split, in the “length” split, the training sequences are shorter than
test ones, and in the “add primitive” splits, some commands are presented in
the training set only in isolation, without being composed with others. The test
set focuses on these excluded combinations.

CFQ [Keysers et al., 2020]. The task consists of translating a question in
natural language into a Freebase SPARQL query. For example, Was M0 a
director and producer of M1 should be translated to SELECT count(*)
WHERE {M0 ns:film.director.film M1 . M0 ns:film.producer.film |
ns:film.production_company.films M1}. The authors introduce splits based
on “compound divergence” which measures the difference between the parse
trees in the different data splits. The authors experimentally show that it is well
correlated with generalization difficulty. It also comes with a length-based split.

PCFG [Hupkes et al., 2020]. The task consists of list manipulations and oper-
ations that should be executed. For example, reverse copy O14 O4 C12 J14
W3 should be translated to W3 J14 C12 O4 O14. It comes with different splits
for testing different aspects of generalization. In this work, we focus on the “pro-
ductivity” split, which focuses on generalization to longer sequences, and on
the “systematicity” split, which focuses on recombining constituents in novel
ways.

COGS [Kim and Linzen, 2020]. The task consists of semantic parsing that
maps an English sentence to a logical form. For example, The puppy slept.
should be translated to * puppy ( x _ 1 ) ; sleep . agent ( x _ 2, x
_ 1 ). It comes with a single split, with a training, IID validation, and OOD
generalization testing set.

Mathematics Dataset [Saxton et al., 2019]. The task consists of textual math
questions at high school level, e.g. What is -5 - 110911? should be trans-
lated to -110916. The data is split into different subsets by the problem cate-
gory, called modules. Some of them come with an extrapolation set, designed
to measure generalization. The amount of total data is very large and thus ex-



52 4.2 Improving Transformers on Systematic Generalization

pensive to train on, but different modules can be studied individually. We focus
on “add_or_sub” and “place_value” modules.

4.1.2 Model Architectures

We focus our analysis on two transformer architectures: standard transformers
[Vaswani et al., 2017] and universal transformers [Dehghani et al., 2019], and in
both cases with absolute or relative positional embedding [Dai et al., 2019]. Our
universal transformer variants are simply transformers with shared weights be-
tween layers, without adaptive computation time [Schmidhuber, 2012; Graves,
2016] and timestep embedding. Positional embeddings are only added to the
first layer.

Universal Transformers are particularly relevant for reasoning and algorith-
mic tasks. For example, if we assume a task consisting of executing a sequence
of operations, a regular transformer will learn successive operations in succes-
sive layers with separate weights. In consequence, if only some particular or-
derings of the operations are seen during training, each layer will only learn
a subset of the operations, and thus it will be impossible for them to recom-
bine operations in an arbitrary order. Moreover, if the same operation has to
be reused multiple times, the network has to re-learn it, which is harmful for
systematic generalization and reduces the data efficiency of the model [Csordás
et al., 2021]. Universal Transformers have the potential to overcome this limita-
tion: sharing the weights between each layer makes it possible to reuse existing
knowledge from different compositions. On the downside, the Universal Trans-
former’s capacity can be limited because of the weight sharing.

4.2 Improving Transformers on Systematic General-
ization

In this section, we present methods that greatly improve transformers on system-
atic generalization tasks, while they could be considered as details in standard
tasks. For each method, we provide experimental evidence on a few represen-
tative datasets. In Sec. 4.3, we apply these findings to all datasets.



53 4.2 Improving Transformers on Systematic Generalization

ℓ (length cutoff) 22 24 25 26 27 28 30 32 33 36 40
Re

fe
re

nc
e +EOS 0.00 0.05 0.04 0.00 0.09 0.00 0.09 0.35 0.00 0.00 0.00

+EOS+Oracle 0.53 0.51 0.69 0.76 0.74 0.57 0.78 0.66 0.77 1.00 0.97
-EOS+Oracle 0.58 0.54 0.67 0.82 0.88 0.85 0.89 0.82 1.00 1.00 1.00

O
ur

s
(+

EO
S)

Trafo 0.00 0.04 0.19 0.29 0.30 0.08 0.24 0.36 0.00 0.00 0.00
+ Relative PE 0.20 0.12 0.31 0.61 1.00 1.00 1.00 0.94 1.00 1.00 1.00

Universal Trafo 0.02 0.05 0.14 0.21 0.26 0.00 0.06 0.35 0.00 0.00 0.00
+ Relative PE 0.20 0.12 0.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Table 4.1: Exact match accuracies on length splits with different cutoffs. The
reported results are the median of 5 runs. Trafo denotes transformers. The
numbers in rows +EOS+Oracle and -EOS+Oracle are taken from Newman et al.
[2020] as reference numbers, but they cannot be compared with others as they
are evaluated with oracle length. Our models use different hyperparameters
compared to theirs. We refer to Sec. 4.2.1 for details.

4.2.1 Addressing the EOS Decision Problem with Relative Posi-
tional Embedding

The EOS decision problem. A thorough analysis by Newman et al. [2020]
highlights that LSTMs and transformers struggle to generalize to longer output
lengths than they are trained for. Specifically, it is shown that the decision on
when to end the sequence (the EOS decision) often overfits to the specific posi-
tions observed in the train set. To measure whether the models are otherwise
able to solve the task, they conduct a so-called oracle evaluation: they ignore the
EOS token during evaluation and use the ground-truth sequence length to stop
decoding. The performance with this evaluation mode is much better, which
illustrates that the problem is in fact the EOS decision. More surprisingly, if the
model is trained without EOS token as part of the output vocabulary (thus, it can
only be evaluated in oracle mode), the performance is further improved. It is
concluded that teaching the model when to end the sequence has undesirable
side effects on the model’s length generalization ability.

We show that the main cause of this EOS decision problem in the case of
transformers is the absolute positional embedding. Generally speaking, the
meaning of a word is rarely dependent on the word’s absolute position in a
document but depends on its neighbors. Motivated by this assumption, various
relative positional embedding methods [Shaw et al., 2018a; Dai et al., 2019]
have been proposed. Unfortunately, they have not been considered for system-



54 4.2 Improving Transformers on Systematic Generalization

atic generalization in prior work (however, see Sec. 4.4), even though they are
particularly relevant for that.

We test transformers with relative positional embedding in the form used in
Transformer XL [Dai et al., 2019]. Since it is designed for auto-regressive models,
we directly apply it in the decoder of our model, while for the encoder, we use
a symmetrical variant of it (see Appendix C.3). The interface between encoder
and decoder uses standard attention without any positional embedding.

Our experimental setting is similar to Newman et al. [2020]. The length split
in the SCAN dataset restricts the length of the train samples to 22 tokens (the test
set consists of samples with an output of more than 22 tokens). This removes
some compositions from the train set entirely, which introduces additional dif-
ficulty to the task. 80% of the test set consists of these missing compositions.
In order to mitigate the issue of unknown composition and focus purely on the
length problem, Newman et al. [2020] resplit SCAN by introducing different
length cutoffs and report the performance of each split. We test our models
similarly. However, our preliminary experiments showed that the performance
of the original model is additionally limited by being too shallow: it uses only 2
layers for both the encoder and decoder. We increase the number of layers to
3. To compensate for the increased number of parameters, we decrease the size
of the feedforward layers from 1024 to 256. In total, this reduces the number of
parameters by 30%. We train our models with Adam optimizer, a learning rate
of 10−4, batch size of 128 for 50k steps.

The results are shown in Tab. 4.1. To show that our changes of hyperparame-
ters are not the main reason for the improved performance, we report the perfor-
mance of our modified model without relative positional embedding (row Trafo).
We also include the results of Newman et al. [2020] for reference. We report
the performance of universal transformer models trained with identical hyperpa-
rameters. All our models are trained to predict the EOS token and are evaluated
without oracle (+EOS configuration). It can be seen that both our standard and
universal transformers with absolute positional embedding have near-zero accu-
racy for all length cutoffs, whereas models with relative positional embedding
excel: they even outperform the models trained without EOS prediction and
evaluated with the ground-truth length.

Although Tab. 4.1 highlights the advantages of relative positional embedding
and shows that they can largely mitigate the EOS-overfitting issue, this does not
mean that the problem of generalizing to longer sequences is fully solved. The
suboptimal performance on short length cutoffs (22-25) indicates that the model
finds it hard to zero-shot generalize to unseen compositions of specific rules.
To improve these results further, research on models which assume analogies



55 4.2 Improving Transformers on Systematic Generalization

between rules and compositions is necessary, such that they can recombine
known constituents without any training example.

Further benefits of relative positional embedding. In addition to the benefit
highlighted in the previous paragraph, we found that models with relative
positional embedding are easier to train in general. They converge faster
(Fig. C.3 in the appendix) and are less sensitive to batch size (Tab. C.6 in the
appendix). As another empirical finding, we note that relative transformers
without shared layers sometimes catastrophically fail before reaching their final
accuracy: the accuracy drops to 0, and it never recovers. We observed this
with PCFG productivity split and the “Math: place_value” task. Reducing the
number of parameters (either using Universal Transformers or reducing the
state size) usually stabilizes the network.

4.2.2 Model Selection Should Be Done Carefully

The danger of early stopping. Another crucial aspect that greatly influences
the generalization performance of transformers is model selection, in particu-
lar early stopping. In fact, on these datasets, it is a common practice to use
only the IID split to tune hyperparameters or select models with early stopping
(e.g. Kim and Linzen [2020]). However, since any reasonable models achieve
nearly 100% accuracy on the IID validation set, there is no good reason to be-
lieve this to be a good practice for selecting models for generalization splits. To
test this hypothesis, we train models on COGS dataset without early stopping,
but with a fixed number of 50k training steps. The best model achieved a test
accuracy of 81%, while the original performance by Kim and Linzen [2020] is
35%. Motivated by this huge performance gap, we had no other choice but
to conduct an analysis on the generalization split to demonstrate the danger of
early stopping and discrepancies between the performance on the IID and gen-
eralization split. The corresponding results are shown in Fig. 4.1 (further effect
of embedding scaling is discussed in next Sec. 4.2.3) and Tab. 4.2. Following
Kim and Linzen [2020], we measure the model’s performance every 500 steps,
and mark the point where early stopping with patience of 5 would pick the best
performing model. It can be seen that, in some cases, the model chosen by early
stopping is not even reaching half of the final generalization accuracy.

To confirm this observation in the exact setting of Kim and Linzen [2020],
we also disabled early stopping in the original codebase 3, and observed that

3https://github.com/najoungkim/COGS

https://github.com/najoungkim/COGS


56 4.2 Improving Transformers on Systematic Generalization

0 10k 20k 30k 40k 50k
Training steps

0

25

50

75
G

en
.

ac
cu

ra
cy

[%
]

No scaling
Token Emb. Up., Noam
Position Emb. Down.

Figure 4.1: Generalization accuracy on COGS as a function of training steps
for standard transformers with different embedding scaling schemes. The ver-
tical lines show the median of the early stopping points for the five runs. The
early stopping parameters are from Kim and Linzen [2020]. “Token Emb. Up.,
Noam” corresponds to the baseline configuration [Kim and Linzen, 2020]. See
Sec. 4.2.3 for details on scaling.

IID Validation Gen. Test

C
O

G
S TEU 1.00 ± 0.00 0.78 ± 0.03

No scaling 1.00 ± 0.00 0.62 ± 0.06
PED 1.00 ± 0.00 0.80 ± 0.00

PC
FG

TEU 0.92 ± 0.07 0.47 ± 0.27
No scaling 0.97 ± 0.01 0.63 ± 0.02
PED 0.96 ± 0.01 0.65 ± 0.03

Table 4.2: Final IID validation and generalizations accuracy for COGS (50k
steps) and PCFG Productivity set (300k steps) with different scaling (Sec. 4.2.3).
Token Embedding Upscaling (TEU) is unstable on PCFG with our hyperparame-
ters. Position EmbeddingDownscaling (PED) performs the best on both datasets.



57 4.2 Improving Transformers on Systematic Generalization

3.00 4.00 5.00 6.00 7.00
Validation loss

10

20

30

40

Te
st

ac
cu

ra
cy

[%
]

1k

50k

Figure 4.2: Relationship between validation loss and test accuracy (same dis-
tribution) on CFQ MCD 1 split for a relative transformer. The color shows the
training step. Five runs are shown. The loss has a logarithmic scale. High accu-
racy corresponds to higher loss, which is unexpected. For detailed analysis, see
Fig. C.2.

the accuracy improved to 65% without any other tricks. We discuss further per-
formance improvements on COGS dataset in Sec. 4.3.4.

The lack of validation set for the generalization split. A general problem
raised in the previous paragraph is the lack of a validation set to evaluate mod-
els for generalization. Most of the datasets come without a validation set for the
generalization split (SCAN, COGS, and PCFG). Although CFQ comes with such
a set, the authors argue that only the IID split should be used for hyperparameter
search, and it is not clear what should be used for model development.

In order to test novel ideas, a way to gradually measure progress is neces-
sary, such that the effect of changes can be evaluated. If the test set is used to
develop the model, it implicitly risks overfitting to this test set. On the other
hand, measuring the performance on the IID split does not necessarily provide
any valuable information on the generalization performance on the systemat-
ically different test set (see Tab. 4.2). The IID accuracy of all the considered
datasets is 100% (except on PCFG where it’s also almost 100%); thus, no further
improvement, nor the potential difference between the generalization perfor-
mance of models can be measured. We further demonstrate this in Tab. 4.3.
We only show datasets for which an IID validation set is available in the same
split as the one reported in Tab. 4.4. With the exception of standard transformer
on PCFG and the “place_value” module of the Mathematics dataset, all other
validation accuracies are 100%, while their generalization accuracy vary wildly.

It would be beneficial if future datasets would have a validation and test set
for both the IID and the generalization split. For the generalization split, the



58 4.2 Improving Transformers on Systematic Generalization

Transformer Uni. Trafo Rel. Trafo Rel. Uni. Trafo

SCAN (lc=26) 1.0 ± 0.0 (0.30) 1.0 ± 0.0 (0.21) 1.0 ± 0.0 (0.72) 1.0 ± 0.0 (1.00)

COGS 1.0 ± 0.0 (0.80) 1.0 ± 0.0 (0.78) 1.0 ± 0.0 (0.81) 1.0 ± 0.0 (0.77)

M add_or_sub 1.0 ± 0.0 (0.89) 1.0 ± 0.0 (0.94) 1.0 ± 0.0 (0.91) 1.0 ± 0.0 (0.97)
M place_value 0.8 ± 0.5 (0.12) 1.0 ± 0.0 (0.20) - 1.0 ± 0.0 (0.75)

Table 4.3: IID validation accuracy for datasets where IID test set is available.
CFQ and PCFG are not shown because they require the model to be trained on
a separate, IID split. The other settings correspond to Tab. 4.4 in the main text.
Generalization split test accuracies are shown in parenthesis for easy compari-
son. ”M” denotes the Mathematics Dataset [Saxton et al., 2019]. SCAN with
length cutoff of 26 shown.

test set could be designed to be more difficult than the validation set. In this
way, the validation set can be used to measure progress during development,
but overfitting to it would prevent the model from generalizing well to the test
set. Such a division can be easily done on the splits to test productivity. For
other types of generalization, we could use multiple datasets sharing the same
generalization problem. Some of them could be dedicated for development and
others for testing.

Intriguing relationship between generalization accuracy and loss. Finally,
we also note the importance of using accuracy (instead of loss) as the model
selection criterion. We find that generalization accuracy and loss do not
necessarily correlate. Despite this, sometimes, model selection based on the
loss is reported in practice e.g. by Kim and Linzen [2020]. Examples of this
undesirable behavior are shown on Fig. 4.2 for CFQ and on Fig. C.1 in the
appendix for COGS dataset. On these datasets, the loss and accuracy on the
generalization split both grow during training. We conducted an analysis to
understand the cause of this surprising phenomenon; we find that the total loss
grows because the loss of the samples with incorrect output increases more
than it improves on the correct ones. For the corresponding experimental
results, we refer to Fig. C.2 in the Appendix. We conclude that even if a
validation set is available for the generalization split, it would be crucial to use
the accuracy instead of the loss for early stopping and hyperparameter tuning.

Finally, on PCFG dataset, we observed epoch-wise double descent phe-
nomenon [Nakkiran et al., 2019], as shown in Fig. 4.3. This can lead to equally



59 4.2 Improving Transformers on Systematic Generalization

0 50k 100k 150k 200k 250k 300k
Training steps

0

25

50

75

A
cc

ur
ac

y
[%

]

Standard
Uni.
Rel. Uni.

0 50k 100k 150k 200k 250k 300k
Training steps

2

4

6

Lo
ss

Standard Uni. Rel. Uni.

Figure 4.3: Test loss and accuracy on PCFG during training. The loss exhibits an
epoch-wise double descent phenomenon [Nakkiran et al., 2019], while the ac-
curacy increases monotonically. Standard transformer with PED (Sec. 4.2.3),
universal transformer with absolute, and relative positional embeddings are
shown.

problematic results if the loss is used for model selection or tuning.

4.2.3 Large Impacts of Embedding Scaling

The last surprising detail that greatly influences the generalization performance
of transformers is the choice of embedding scaling scheme. This is especially
important for transformers with absolute positional embedding, where the word
and positional embedding have to be combined. We experimented with the
following scaling schemes:

1. Token Embedding Upscaling (TEU). This is the standard scaling used by
Vaswani et al. [2017]. It uses Glorot initialization [Glorot and Bengio,
2010] for word embeddings. However, the range of sinusoidal positional
embedding is always in [−1, 1]. Since the positional embedding is directly
added to the word embeddings, this discrepancy can make the model
untrainable. Thus, the authors upscale the word embeddings by

√
dmodel

where dmodel is the embedding size. OpenNMT4, the framework used for
the baseline models for PCFG and COGS datasets respectively by Hupkes
et al. [2020] and Kim and Linzen [2020], also uses this scaling scheme.

2. No scaling. It initializes the word embedding with N (0, 1) (normal distri-
bution with mean 0 and standard deviation of 1). Positional embeddings
are added without scaling.

3. Position Embedding Downscaling (PED), which uses Kaiming initializa-
tion [He et al., 2015], and scales the positional embeddings by 1√

dmodel
.

4https://opennmt.net/

https://opennmt.net/


60 4.3 Results Across Different Datasets

The PED differs from TEU used by Vaswani et al. [2017] in two ways: in-
stead of scaling the embedding up, PED scales the positional embedding down
and uses Kaiming instead of Glorot initialization. The magnitude of the embed-
dings should not depend on the number of words in the vocabulary but on the
embedding dimension.

Tab. 4.2 shows the results. Although the “no scaling” variant is better than
TEU on the PCFG test set, it is worse on the COGS test set. PED performs
consistently the best on both datasets. Importantly, the gap between the best
and worst configurations is large on the test sets. The choice of scaling thus also
contributes in the large improvements we report over the existing baselines.

4.3 Results Across Different Datasets

In this section, we apply themethodswe illustrated in the previous section across
different datasets. Tab. 4.4 provides an overview of all improvements we obtain
on all considered datasets. Unless reported otherwise, all results are the mean
and standard deviation of 5 different random seeds. If multiple embedding scal-
ing schemes are available, we pick the best performing one for a fair comparison.
Transformer variants with relative positional embedding outperform the absolute
variants on almost all tested datasets. Except for COGS and CFQ MCD 1, the
universal variants outperform the standard ones. In the following, we discuss
and highlight the improvements we obtained for each individual dataset.

4.3.1 SCAN

We focus on the length split of the dataset. We show that it is possible to mitigate
the effect of overfitting to the absolute position of the EOS token by using relative
positional embedding. We have already discussed the details in Sec. 4.2.1 and
Tab. 4.1.

4.3.2 CFQ

On the output length split of CFQ, our universal transformer with absolute po-
sitional embedding achieves significantly better performance than the one re-
ported by Keysers et al. [2020]: 77% versus ∼ 66%5. Here, we were unable
to identify the exact reason for this large improvement. The only architectural
difference between the models is that ours does not make use of any timestep

5As Keysers et al. [2020] only report charts, the exact value is unknown.



61 4.3 Results Across Different Datasets

Tr
af
o

U
ni

.
Tr

af
o

Re
l.

Tr
af
o

Re
l.

U
ni

.
Tr

af
o

Pr
io

rW
or

k

SC
A
N

(c
ut

of
f=

26
)

0.
30

±
0.

02
0.

21
±

0.
01

0.
72

±
0.

21
1.
00

±
0.
00

0.
00

[1
]

C
FQ

O
ut

pu
tl

en
gt

h
0.

57
±

0.
00

0.
77

±
0.

02
0.

64
±

0.
06

0.
81

±
0.
01

∼
0
.6
6[
2
]

C
FQ

M
C
D

1
0.
40

±
0.
01

0.
39

±
0.

03
0.

39
±

0.
01

0.
39

±
0.

04
0
.3
7
±
0
.0
2[
3
]

C
FQ

M
C
D

2
0.

10
±

0.
01

0.
09

±
0.

02
0.

09
±

0.
01

0.
10

±
0.
02

0
.0
8
±
0
.0
2[
3
]

C
FQ

M
C
D

3
0.

11
±

0.
00

0.
11

±
0.

01
0.

11
±

0.
01

0.
11

±
0.
03

0
.1
1
±
0
.0
0[
3
]

C
FQ

M
C
D

m
ea

n
0.

20
±

0.
14

0.
20

±
0.

14
0.

20
±

0.
14

0.
20

±
0.
14

0
.1
9
±
0
.0
1[
2
]

PC
FG

Pr
od

.
sp

lit
0.

65
±

0.
03

0.
78

±
0.

01
-

0.
85

±
0.
01

0
.5
0
±
0
.0
2[
4
]

PC
FG

Sy
s.

sp
lit

0.
87

±
0.

01
0.

93
±

0.
01

0.
89

±
0.

02
0.
96

±
0.
01

0
.7
2
±
0
.0
0[
4
]

C
O

G
S

0.
80

±
0.

00
0.

78
±

0.
03

0.
81

±
0.
01

0.
77

±
0.

01
0
.3
5
±
0
.0
6[
5
]

M
at
h:

ad
d_

or
_s

ub
0.

89
±

0.
01

0.
94

±
0.

01
0.

91
±

0.
03

0.
97

±
0.
01

∼
0
.9
1[
6
]∗

M
at
h:

pl
ac

e_
va

lu
e

0.
12

±
0.

07
0.

20
±

0.
02

-
0.
75

±
0.
10

∼
0
.6
9[
6
]∗

Ta
bl

e
4.

4:
Te

st
ac

cu
ra

cy
of

di
ffe

re
nt

tra
ns

fo
rm

er
(T
ra

fo
)v

ar
ia
nt

s
on

th
e

co
ns

id
er

ed
da

ta
se

ts
.
Se

e
Se

c.
4.

3
fo

r
de

ta
ils

.
Th

e
la
st

co
lu

m
n

sh
ow

s
pr

ev
io

us
ly

re
po

rt
ed

ac
cu

ra
ci
es

.
Re

fe
re

nc
es

:
[1

]N
ew

m
an

et
al
.[

20
20

],
[2

]K
ey

se
rs

et
al
.[

20
20

],
[3

]h
tt
ps
:/
/g
it
hu
b.
co
m/
go
og
le
-r

es
ea
rc
h/
go
og
le
-r

es
ea
rc
h/
tr
ee
/m
as
te
r/
cf
q,

[4
]H

up
ke

se
ta

l.
[2

02
0]

,[
5]

Ki
m

an
d
Li
nz

en
[2

02
0]

,[
6]

Sa
xt
on

et
al
.[
20

19
].

Re
su

lts
m

ar
ke

d
w
ith

∗
ca

nn
ot

be
di

re
ct
ly

co
m

pa
re

d
du

e
to

di
ffe

re
nt

tra
in

in
g

se
tu

ps
.
∼

de
no

te
s
ap

pr
ox

im
at
iv
e
nu

m
be

rs
re

ad
fro

m
ch

ar
ts

re
po

rt
ed

in
pr

ev
io

us
w
or

ks
.

https://github.com/google-research/google-research/tree/master/cfq


62 4.3 Results Across Different Datasets

(i.e. layer ID) embedding. Also, the positional embedding is only injected to the
first layer in case of absolute positional embeddings (Sec. 4.1.2). The relative
positional embedding variant performs even better, achieving 81%. This con-
firms the importance of using relative positional embedding as a default choice
for length generalization tasks, as we also demonstrated on SCAN in Sec. 4.2.1.

On the MCD splits, our results slightly outperform the baseline by Keysers
et al. [2020], as shown in Tab. 4.4. Relative universal transformers perform
marginally better than all other variants, except for MCD 1 split, where the stan-
dard transformer wins with a slight margin. We use hyperparameters from Key-
sers et al. [2020]. We report performance after 35k training steps.

4.3.3 PCFG

The performance of different models on the PCFG dataset is shown on Tab. 4.4.
First, simply by increasing the number of training epochs from 25, used by Hup-
kes et al. [2020], to ∼237 (300k steps), our model achieves 65% on the produc-
tivity split compared to the 50% reported by Hupkes et al. [2020] and 87% com-
pared to 72% on the systematicity split. Furthermore, we found that universal
transformers with relative positional embeddings further improve performance
to a large extent, achieving 85% final performance on the productivity and 96%
on the systematicity split. We experienced instabilities while training transform-
ers with relative positional embeddings on the productivity split; therefore, the
corresponding numbers are omitted in Tab. 4.4 and Fig. C.3 in the Appendix.

4.3.4 COGS

On COGS, our best model achieves the generalization accuracy of 81% which
greatly outperforms the 35% accuracy reported by Kim and Linzen [2020]. This
result obtained by simple tricks is competitive compared to the state-of-the-art
performance of 83% reported by Akyürek and Andreas [2021]6. As we discussed
in Sec. 4.2.2, just by removing early stopping in the setting of Kim and Linzen
[2020], the performance improves to 65%. Moreover, the baseline with early
stopping is very sensitive to the random seed and even sensitive to the GPU
type it is run on. Changing the seed in the official repository from 1 to 2 causes
a dramatic performance dropwith a 2.5% final accuracy. By changing the scaling
of embeddings (Sec. 4.2.3), disabling label smoothing, fixing the learning rate

6Akyürek and Andreas [2021] was published on arXiv on June 7 and later at ACL 2021. We
were unaware of this work at the time of submission to EMNLP 2021 (May 17, 2021).



63 4.4 Related Work

to 10−4, we achieved 81% generalization accuracy, which is stable over multiple
random seeds.

Tab. 4.4 compares different model variants. Standard transformers with ab-
solute and relative positional encoding perform similarly, with the relative po-
sitional variant having a slight advantage. Here universal transformers perform
slightly worse.

4.3.5 Mathematics Dataset

We also test our approaches on subsets of Mathematics Dataset [Saxton et al.,
2019]. Since training models on the whole dataset is too resource-demanding,
we only conduct experiments on two subsets: “place_value” and “add_or_sub”.

The results are shown in Tab. 4.4. While we cannot directly compare our
numbers with those reported by Saxton et al. [2019] (a single model is jointly
trained on the whole dataset there), our results show that relative positional
embedding is advantageous for the generalization ability on both subsets.

4.4 Related Work

The study of generalization ability of neural networks at different stages of train-
ing has been a general topic of interest [Nakkiran et al., 2019; Roelofs, 2019].
Our analysis has shown that this question is particularly relevant to the problem
of systematic generalization, as demonstrated by large performance gaps in our
experiments, which has not been discussed in prior work.

Prior work proposed several sophisticated initialization methods for trans-
formers [Zhang et al., 2019; Zhu et al., 2021], e.g. with a purpose of removing
the layer normalization components [Huang et al., 2020]. While our work only
revisited basic scaling methods, we demonstrated their particular importance
for systematic generalization.

In recent work,7 Ontañón et al. [2021] have also focused on improving the
compositional generalization abilities of transformers. In addition to relative
positional encodings and universal transformers, novel architectural changes
such as ”copy decoder” as well as dataset-specific ”intermediate representations”
[Herzig et al., 2021] have been studied. However, other aspects we found cru-
cial, such as early stopping, scaling of the positional embeddings, and the valida-
tion set issues have not been considered. In consequence, our models achieve

7Our work was submitted to EMNLP 2021 on May 17, 2021 and has been under the
anonymity period until Aug. 25. Ontañón et al. [2021] appeared on arXiv on Aug. 9, 2021.



64 4.5 Conclusion

substantially higher performance than the best results reported by Ontañón et al.
[2021] across all standard datasets: PCFG, COGS, and CFQ (without intermedi-
ate representations).

Finally, our study focused on the basic transformer architectures. However,
the details discussed above in the context of algorithmic tasks should also be
relevant for other transformer variants and fast weight programmers [Schmidhu-
ber, 1992a; Schlag et al., 2021; Irie et al., 2021], as well as other architectures
specifically designed for algorithmic reasoning [Graves et al., 2016; Kaiser and
Sutskever, 2016; Csordás and Schmidhuber, 2019; Freivalds et al., 2019].

4.5 Conclusion

In this work, we show that the performance of transformer architectures on many
recently proposed datasets for systematic generalization can be greatly improved
by revisiting basic model and training configurations. Model variants with rela-
tive positional embedding often outperform those with absolute positional em-
bedding. They also mitigate the EOS decision problem, an important problem
previously found by Newman et al. [2020] when considering the length gener-
alization of neural networks. This allows us to focus on the problem of composi-
tions in the future, which is the remaining problem for the length generalization.

We also demonstrated that reconsidering early stopping and embedding scal-
ing can greatly improve baseline transformers, in particular on the COGS and
PCFG datasets. These results shed light on the discrepancy between the model
performance on the IID validation set and the test accuracy on the systemati-
cally different generalization split. As consequence, currently common practice
of validating models on the IID dataset is problematic. We conclude that the
community should discuss proper ways to develop models for systematic gener-
alization. In particular, we hope that our work clearly demonstrated the neces-
sity of a validation set for systematic generalization in order to establish strong
baselines and to avoid a false sense of progress.



Chapter 5

Achieving Length Generalization
with Transformers1

Despite the significant improvements we saw in Sec. 4, our improved shared
layer transformer with relative positional encodings still fails to achieve length
generalization on simple algorithmic tasks. In this work, we ask the question:
which type of architectural inductive bias encourages the training process to
select “good” solutions that have good productivity?

As a reminder, popular transformers [Vaswani et al., 2017] also often fail to
generalize on algorithmic tasks (e.g. Liska et al. [2018]; Dubois et al. [2020];
Chaabouni et al. [2021]; Csordás et al. [2021]; Ontañón et al. [2021]), even on
tasks with intuitive solutions that can be simply expressed in terms of transformer
attention patterns. Given an input sequence of length N and a transformer en-
coder of depth T , solving an algorithmic task often consists of routing the rele-
vant information to the right node/operation at the right time in the T -by-N grid
represented by transformer columns (illustrated in Fig. 5.2/Left). Effectively, the
task is to learn to draw an adaptive control flow on the canvas of transformer
columns. In fact, recent work by Weiss et al. [2021] introduced a programming
language called RASP, which is specifically designed to express solutions to
sequence processing problems, and which has a direct equivalent to the oper-
ations in transformer encoders. However, it is shown that transformers learn
solutions expressed in RASP only through intermediate supervision of attention
patterns, and sometimes even such supervision fails. Generally speaking, trans-
formers fail to find easily interpretable and/or symbolic solutions to algorithmic
tasks. We conversely hypothesize that attention-based NNs that are able to find

1For the full paper please see our work “The Neural Data Router: Adaptive Control Flow in
Transformers Improves Systematic Generalization” [Csordás et al., 2022a]

65



66 5.1 Improving Transformers for Learning Adaptive Control Flow

intuitive solutions (achieving interpretable attention patterns) could improve sys-
tematic generalization.

Here we point out that regular transformers lack some basic ingredients for
learning such “intuitive” solutions to algorithmic problems. As a remedy, we
propose simple architectural modifications to help them learn data routing. As
a first step towards validating our model, we focus on the popular length gen-
eralization task of compositional table lookup (CTL [Liska et al., 2018; Hupkes
et al., 2019; Dubois et al., 2020]), as well as two more complex tasks: a simple
arithmetic task and a variant of ListOps [Nangia and Bowman, 2018] designed
to test the compositional generalization ability of NNs. Our novel Neural Data
Router (NDR) achieves 100% generalization accuracy (never reported before)
on the CTL task and obtains nearly perfect accuracy on both the proposed sim-
ple arithmetic and ListOps tasks. We show that the attention and gating patterns
of NDR tend to be interpretable as plausible control flows.

5.1 Improving Transformers for Learning Adaptive
Control Flow

We argue that the following components are needed to build transformers capa-
ble of learning adaptive control flow. First, as discussed in Sec. 1.3.2, composing
known operations in an arbitrary order requires that all operations are available
at every computational step. This can be easily achieved by sharing the weights
of the layers, as is done in Universal Transformers [Dehghani et al., 2019]. Sec-
ond, the network should be sufficiently deep, at least as deep as the deepest
data dependency in the computational graph built from elementary operations
(e.g., in the case of a parse tree, this is the depth of the tree). Otherwise, multi-
ple operations must be fused into a single layer and hinder natural and elegant
compositions (see Sec. 1.3.3). Third, inputs in some columns should remain
unchanged until it is their turn to be processed. The regular transformer lacks a
mechanism to skip the whole transformation step by simply copying the input
to the next step/layer. We propose a special gating function, copy gate, to im-
plement such a mechanism (Sec. 5.1.1). Finally, many algorithmic tasks require
combining several local computations in the right order. This typically implies
that attention should not focus on all possible matches at a given time, but only
on the closest match. We propose and investigate a new type of attention with
a corresponding inductive bias called geometric attention (Sec. 5.1.2). Using
both the geometric attention and the copy gate, our model implements a “neu-



67 5.1 Improving Transformers for Learning Adaptive Control Flow

ral data routing mechanism”, which can adaptively serialize the input problem.
We refer to the resulting new transformer as Neural Data Router (NDR). In the
experimental section (Sec. 5.2), we evaluate this model on three algorithmic
tasks that require length generalization and demonstrate its effectiveness.

5.1.1 Copy Gate: Learning to Skip Operations (Vertical Flow)

Each layer of the regular transformer consists of one self-attention and one feed-
forward block. The input of each of these blocks is directly connected to the
corresponding output via a residual connection [Srivastava et al., 2015b,a; He
et al., 2016]. However, such a connection does not allow for easily skipping
the transformation of the entire layer and simply passing the unchanged input
to the next layer. Here, we propose adding an explicit gate, which we call copy
gate, to facilitate such a behavior.

Figure 5.1: Structure of the transformer/NDR layer with a copy gate. The blue
part corresponds to the standard transformer, except for the missing residual
connection around the feedforward block (“FF: Update”). The gray part is the
copy gate. The feedforward part corresponding to the gate is usually significantly
smaller than the one used for the update.

We consider a T -layer (post-layernorm) transformer encoder and an input
sequence of length N . Since each layer corresponds to one computational step,
we often refer to a layer as a step t. We denote the transformer state of the column
i in layer t as h(i,t) = Ht,i ∈ Rd where d is the state size, and Ht ∈ RN×d denotes
the states of all N columns in layer t. In the copy gate-augmented transformer



68 5.1 Improving Transformers for Learning Adaptive Control Flow

(Fig. 5.1), each column i in layer (t+1) processes the inputHt similarly to regular
transformers:

a(i,t+1) = LayerNorm(MultiHeadAttention(h(i,t),Ht,Ht) + h
(i,t)) (5.1)

u(i,t+1) = LayerNorm(FFNdata(a(i,t+1))) (5.2)

using the standard multi-head attention operation [Vaswani et al., 2017] with
a query obtained from h(i,t) and keys/values from Ht, but the output is gated
(using g(i,t+1) ∈ Rd) as:

g(i,t+1) = σ(FFNgate(a(i,t+1))) (5.3)

h(i,t+1) = g(i,t+1) ⊙ u(i,t+1) + (1− g(i,t+1))⊙ h(i,t) (5.4)

We use the basic two-layer feedforward block [Vaswani et al., 2017] for both
FFNdata and FFNgate which transforms input x ∈ Rd to:

FFN(x) =W2 max(W1x+ b1, 0) + b2 (5.5)

but with separate parameters and different dimensionalities: for FFNdata

W data
1 ∈ RdFF×d, W data

2 ∈ Rd×dFF , while for FFNgate W gate
1 ,W gate

2 ∈ Rd×d, with
biases bdata

1 ∈ RdFF and bdata
2 , bgate

1 , bgate
2 ∈ Rd.

When the gate is closed i.e. g(i,t+1) = 0 in Eq. 5.4, the entire transformation is
skipped and the input is copied over to the next layer h(i,t+1) = h(i,t). Crucially,
we parameterize the gate (Eq. 5.3) as a function of the output of self-attention
(Eq. 5.1), such that the decision to copy or transform the input for each column
depends on the states of all columns. This is a crucial difference compared
to previously proposed gatings in transformers, which are motivated solely by
training stability [Parisotto et al., 2020] or by a common practice of convolution-
based models [Chaabouni et al., 2021]. None of the previous approaches can
implement the behavior of our copy gate (see Sec. 5.5 on related work).

The gate bias bgate
2 is initialized to −3 [Hochreiter and Schmidhuber, 1997].

This ensures that no update is performed initially to create a better gradient flow
between layers. It also encourages the model to skip layers unless they have an
important contribution in the corresponding step.

5.1.2 Geometric Attention: Learning to Attend to the Closest
Match (Horizontal Flow)

We propose geometric attention designed to attend to the closest matching ele-
ment. Like in regular self-attention, given an input sequence [x(1),x(2), ...,x(N)]



69 5.1 Improving Transformers for Learning Adaptive Control Flow

with x(i) ∈ Rdin , each input is projected to key k(i) ∈ Rdkey , value v(i) ∈ Rdvalue ,
query q(i) ∈ Rdkey vectors, and the dot product is computed for each key/query
combination. In our geometric attention, the dot product is followed by a sig-
moid function to obtain a score between 0 and 1:

Pi,j = σ(k(j)⊤q(i)) (5.6)

which will be treated as a probability of the key at (source) position j matching
the query at (target) position i. These probabilities are finally converted to the
attention scores Ai,j as follows:

Ai,j = Pi,j

∏
k∈Si,j

(1− Pi,k) (5.7)

where Si,j denotes the set of all (source) indices that are closer to i than j is to i,
and when two indices have the same distance to i, we consider the one which
is to the right of i (i.e., greater than i) to be closer, i.e.,

Si,j =

{
k ∈ {1, ..., N} \ {i, j} : |i− k| < |i− j|, if i < j

k ∈ {1, ..., N} \ {i, j} : |i− k| ≤ |i− j|, if j < i
(5.8)

In addition, we explicitly zero out the diagonal by setting Ai,i = 0 for all
i = 1, ..., N . The ordering of source indices is illustrated in Fig. 5.2/Right. The
resulting scores Ai,j are the attention scores used to compute the weighted av-
erages of the value vectors.

By using the terms (1−Pi,k) in Eq. 5.7, when there is a match, it downscales
any other more distant matches. Two recent works [Brooks et al., 2021; Banino
et al., 2021] use such a parameterized geometric distribution in the form of
Eq. 5.7 (see Sec. 5.5 on related work).

The resulting attention function has a complexity of O(N2), similar to the
regular self-attention used in transformers [Vaswani et al., 2017]. Eq. 5.7 can be
implemented in a numerically stable way in log space. The products can then
be calculated using cumulative sums, subtracting the elements for the correct
indices in each position.

Directional encoding. In practice, we augment Eq. 5.6 with an additional di-
rectional encoding. In fact, the only positional information available in the ge-
ometric attention presented above is the ordering used to define the product in
Eqs. 5.7-5.8. In practice, we found it crucial to augment the score computation



70 5.2 Experiments

1 2 3 4 5

Source pos.

1

2

3

4

5

Ta
rg

et
po

s.

2

4

4

4

1

2

3

3

2

1

2

2

3

3

1

1

4

4

3

1

Figure 5.2: Left: an ideal sequence of computations in a transformer for an arith-
metic expression. Right: ordering (numbers in the grid) of source positions used
in geometric attention (Eq. 5.8; N = 5).

of Eq. 5.6 with additional directional information, encoded as a scalarDi,j ∈ R
for each target/source position pair (i, j):

Di,j =

{
WLRh

(i) + bLR, if i ≤ j

WRLh
(i) + bRL, if i > j

(5.9)

where h(i) ∈ Rd denotes the input/state at position i and WLR,WRL ∈ R1×d,
bLR, bRL ∈ R are trainable parameters. This directional information is integrated
into the score computation of Eq. 5.6 as follows (akin to how Dai et al. [2019]
introduce the relative positional encoding [Schmidhuber, 1992d] as an extra
term in the computation of attention scores):

Pi,j = σ
(
α
(
Wqh

(i) + bq
)⊤
Wk,Eh

(j) + βDi,j + γ
)

(5.10)

where the matrix Wq ∈ Rdhead×d maps the states to queries, bq ∈ Rdhead is a
bias for queries, Wk,E ∈ Rdhead×d maps states to keys (we note that dhead is typi-
cally the size of the key, query and value vectors for each head, dhead = d

nheads
),

and α, β, γ ∈ R are learned scaling coefficients and bias, initialized to α =
1√
dhead

, β = 1, γ = 0. Using this additional directional information, each query

(position i) can potentially learn to restrict its attention to either the left or right
side.

5.2 Experiments

We evaluate the proposed methods on three tasks: the compositional table
lookup [Liska et al., 2018; Hupkes et al., 2019], a custom variant of ListOps
[Nangia and Bowman, 2018], and a simple arithmetic task, which we propose.
In all cases, the task is designed to test the compositional generalization ability



71 5.2 Experiments

of NNs: the model has to learn to apply operations seen during training in a
longer/deeper compositional way (productivity). Further experimental details
for each task can be found in the Appendix D.3.

5.2.1 Compositional Table Lookup

Task. The compositional table lookup task [Liska et al., 2018; Hupkes et al.,
2019; Dubois et al., 2020] is constructed based on a set of symbols and unary
functions defined over these symbols. Each example in the task is defined by
one input symbol and a list of functions to be applied sequentially, that is, the
first function is applied to the input symbol and the resulting output becomes
the input to the second function, and so forth. There are eight possible symbols.
Each symbol is traditionally represented by a 3-bit bitstring [Liska et al., 2018].
However, in practice, they are simply processed as one token [Dubois et al.,
2020]. The functions are bijective and randomly generated. Each function is
represented by a letter. An example input is ‘101 d a b’, which corresponds to
the expression b(a(d(101))); the model has to predict the correct output symbol.
We note that there exists a sequence-to-sequence variant of this task [Dubois
et al., 2020] where the model has to predict all intermediate steps (thus trained
with intermediate supervision). We directly predict the final output. An ideal
model should be able to solve this task independently of the presentation order,
that is, it should not matter whether the task is encoded as ‘101 d a b’ or ‘b a
d 101’. We thus study both forward (former) and backward (latter) variants of
the task. To evaluate systematic generalization, the train/valid/test sets reflect
different numbers of compositions: samples with 1-5/6-8/9-10 operations,
respectively. To the best of our knowledge, no previous work has reported
perfect accuracy on this task using an NN. We refer the reader to Sec. 5.5 for
further details on the previous work.

Results. We consider five different baselines: an LSTM [Hochreiter and
Schmidhuber, 1997], bidirectional LSTM [Graves et al., 2005], DNC [Graves
et al., 2016; Csordás and Schmidhuber, 2019], Universal Transformers [Vaswani
et al., 2017; Dehghani et al., 2019], and its relative position variants [Csordás
et al., 2021]. For transformers, the prediction is based on the last column in
the final layer (we conduct an ablation study on this choice in Appendix D.1).
The hyperparameters used for each model can be found in Tab. D.3 in the Ap-
pendix. The main results on this task are shown in Tab. 5.1. The LSTM and
DNC perform well in the forward variant, achieving perfect generalization for



72 5.2 Experiments

longer sequences, but fail on the backward variant. This is not surprising since
in the forward case, the input symbols are presented in the “right” processing
order to the LSTM. As expected, the bidirectional LSTM performs well in both
presentation orders, since one of its processing directions is always aligned with
the order of computation. However, for an arbitrary task, the order of processing
is not given. For example, for ListOps (Sec. 5.2.3), the processing should start
from the deepest point in the parse tree, which is probably somewhere in the
middle of the sequence. Experiments on other tasks (Sec. 5.2.2 and 5.2.3) that
require arbitrary processing orders show that bidirectional LSTMs do not general-
ize well in such tasks. This is not satisfactory since our goal is to create a generic
architecture that can solve arbitrary problems with an arbitrary underlying input
processing order. While the transformer seems to be a good candidate for learn-
ing problem-dependent processing orders, the baseline transformer variants fail
to generalize in this task in both directions.

By introducing the copy gate (Sec. 5.1.1), the relative transformer can solve
the forward task, but not the backward one. Our analysis showed that the net-
work learns to attend to the last operation based on relative position information.
Since the result is read from the last column, this position changes with the se-
quence length. The model thus fails to generalize to such arbitrary offsets. To
address this issue, we introduce a simple mechanism to let the model choose be-
tween absolute and relative positional encodings at each position (see Appendix
D.2). The resulting model effectively manages to use the absolute position for
the prediction and performs well in both directions. However, such a combi-
nation of absolute/relative positional encoding might be an overly specific bias.
A more generic solution, geometric attention (Sec. 5.1.2), also achieved perfect
generalization and was found to be easier to train. We present the correspond-
ing visualization of our model in Sec. 5.3.

Are all those layers needed? In Sec. 5.1, we hypothesized that decomposition
of the problem into its elementary operations is a necessary property of a model
which generalizes. This motivated us to configure our models to have at least
as many layers as the depth of the computation involved, plus a few additional
layers for writing the output and for gathering an overview of the problem at
the beginning. We assumed that in such a model with a sufficient number of
layers, each layer learns the underlying “elementary” operation. Therefore, the
resulting models are deeper than those typically used in the literature for similar
tasks [Keysers et al., 2020; Tay et al., 2021]. Here we provide an ablation study
to demonstrate that such depths are effectively necessary for generalization. We



73 5.2 Experiments

IID Longer

Model Forward Backward Forward Backward

LSTM 1.00 ± 0.00 0.59 ± 0.03 1.00 ± 0.00 0.22 ± 0.03
Bidirectional LSTM 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
DNC 1.00 ± 0.00 0.57 ± 0.06 1.00 ± 0.00 0.18 ± 0.02

Transformer 1.00 ± 0.00 0.82 ± 0.39 0.13 ± 0.01 0.12 ± 0.01
+ rel 1.00 ± 0.00 1.00 ± 0.00 0.23 ± 0.05 0.13 ± 0.01
+ rel + gate 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.19 ± 0.04
+ abs/rel + gate 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.02 0.98 ± 0.03
+ geom. 0.96 ± 0.04 0.93 ± 0.06 0.16 ± 0.02 0.15 ± 0.02
+ geom. + gate (NDR) 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00

Table 5.1: Accuracy on compositional table lookup dataset.

measure the IID and generalization performance with various numbers of layers
on the compositional table lookup dataset. Since our test set on the CTL task
consists of up to 10 function applications, it should require about 12 layers
according to our hypothesis. Tab. 5.2 shows the results. We clearly observe
that, while the shallow models can also solve the IID split, only the deep models
generalize to the longer problems (here the 12-layer model generalizes almost
perfectly, but the 10-layer one does not). This supports our hypothesis about
how the shared-layer transformers solve the problem, and demonstrates a direct
consequence of the fusing effect discussed in Sec. 1.3.3.

IID Test

nlayers Forward Backward Forward Backward

14 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
12 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.02
10 1.00 ± 0.00 1.00 ± 0.00 0.75 ± 0.04 0.62 ± 0.05
8 1.00 ± 0.00 1.00 ± 0.00 0.23 ± 0.02 0.24 ± 0.03
6 1.00 ± 0.00 0.96 ± 0.03 0.22 ± 0.05 0.15 ± 0.01
4 0.96 ± 0.04 0.68 ± 0.11 0.14 ± 0.01 0.13 ± 0.01

Table 5.2: The performance of NDR on the compositional table lookup dataset,
with different number of layers.



74 5.2 Experiments

5.2.2 Simple Arithmetic

In order to validate the success of the proposed model on a task that involves
more complex data flows and operations, we propose the simple arithmetic task.

Task. The task is to execute an arithmetic expression consisting of nested mod-
ulo 10 additions and multiplications. This requires the model to process tree-
structured data flows, which is presumably more difficult than the sequential
processing required for the CTL task. Each operation is surrounded by brackets
so that the boundaries of the operations are easy to determine. For example
‘((4*7)+2)’ should evaluate to ‘0’ (30 modulo 10). Expressions are generated
randomly. The tree depth is up to 5 for the training set, 6 for the validation set,
and 7-8 for the test set. The depth is measured as the number of operations, ig-
noring the leaves, so the example above has a depth of 2. The sequence length
is limited to at most 50 tokens.

Results. Tab. 5.3 shows the results. All considered models perform well on
the IID validation data, but none except the NDR performs well on the general-
ization test set, which achieves a near-perfect accuracy of 98%. We also note
that the NDR learns very quickly: while all other models require about 200K
steps to converge, the NDR achieves near-perfect accuracy after 50K steps of
training.

IID (1..5) Test (7..8)

200K 200K 50K

LSTM 0.99 ± 0.00 0.74 ± 0.02 0.72 ± 0.01
Bidirectional LSTM 0.98 ± 0.01 0.82 ± 0.06 0.80 ± 0.04

Transformer 0.98 ± 0.01 0.47 ± 0.01 0.29 ± 0.01
+ rel 1.00 ± 0.00 0.77 ± 0.04 0.40 ± 0.05
+ abs/rel + gate 1.00 ± 0.01 0.80 ± 0.16 0.73 ± 0.15
+ geom. att. + gate (NDR) 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.01

Table 5.3: Performance of different models on the simple arithmetic dataset.
All models are trained for 200K iterations, except for the NDR, which we stop
training at 100K. We also report the performance after 50K iterations, where it
can be seen that NDR converges significantly faster than the others.



75 5.2 Experiments

5.2.3 ListOps

We also evaluate our model on a variant of the ListOps task [Nangia and Bow-
man, 2018] which is a popular task commonly used to evaluate the parsing
abilities of NNs [Havrylov et al., 2019; Shen et al., 2019; Xiong et al., 2021;
Tay et al., 2021; Irie et al., 2021]. Some special architectures, such as the one
presented by Chowdhury and Caragea [2021] can almost perfectly generalize
to longer sequences on this task. However, as far as we know, no transformer
variant has been reported to be fully successful.

Task. The task consists of executing nested list operations written in prefix no-
tation. All operations have a list of arguments that can be either a digit (from
0 to 9) or recursively another operation with its own list of arguments. The
operations are min, max, median, and sum. The sum is modulo 10, and the
median is followed by the floor function such that the output of any operation
lies between 0 and 9. For example: [MED 4 8 5 [MAX 8 4 9 ] ] should re-
turn 6. There are two well-known variants: the original variant of Nangia and
Bowman [2018] and the “Long Range Arena” variant by Tay et al. [2021] which
have different maximum numbers of arguments in each function and maximum
sequence lengths. In both variants, there is no strict control of the depth of data
samples: there is simply a certain pre-defined probability that each argument in
the list is expanded into another list (which may increase the tree depth). This is
not suitable for evaluating systematic generalization in terms of compositional-
ity (over the depth of the problem). We propose instead to generate clean train,
valid, and test splits with disjoint depths: up to depth 5 for training, depth 6 for
validation, and depths 7 and 8 for test. Importantly, we make sure that a depth-
K sample effectively requires computation until depth-K (otherwise min, max,
and med operations could potentially find the output without executing all of its
arguments). By dissociating the splits by depth, we can clearly identify models
that fail to generalize compositionally. Apart from the depth specifications, all
train/valid/test sets share the same settings as follows: the maximum sequence
length is 50 (tokens), the probability of recursively sampling another function
inside a list is 30% at each position, and the maximum number of arguments
for a function is 5. The train set consists of 1M, the validation and test sets of 1K
sequences.

Results. Tab. 5.4 shows the results. Like on the other tasks, the baseline LSTM
and transformers do not generalize well on the test set consisting of deeper prob-
lems, while they achieve near-perfect accuracy on IID data. On the contrary, our



76 5.3 Analysis

model achieves a near-perfect generalization.

IID (1..5) Test (7..8)

LSTM 0.99 ± 0.00 0.71 ± 0.03
Bidirectional LSTM 1.00 ± 0.00 0.57 ± 0.04

Transformer 0.98 ± 0.00 0.74 ± 0.03
+ rel 0.98 ± 0.01 0.79 ± 0.04
+ abs/rel + gate 1.00 ± 0.01 0.90 ± 0.06
+ geom. att. + gate (NDR) 1.00 ± 0.00 0.99 ± 0.01

Table 5.4: Performance of different models on balanced ListOps dataset. All
models are trained for 200K iterations, except all +gate variants which converge
after 100K steps. The numbers in the parentheses indicate the problem depths
(1-5 for the IID, and 7-8 for the test set).

5.3 Analysis

In this section, we provide some visualizations of attention and gating patterns
of the NDR and the corresponding analyses. For more visualizations, we refer
the readers to Appendix D.4.

Compositional Table Lookup. Fig. 5.3 shows the gating and attention patterns
of the NDR model for an example of the backward presentation task. As shown
in Fig. 5.3/Bottom, the gates of different columns open sequentially one after
another when the input is available for them. Fig. 5.3/Top shows the corre-
sponding attention maps. Each column attends to the neighboring one, waiting
for its computation to be finished. The behavior of the last column is different:
It always attends to the second position of the sequence, which corresponds to
the last operation to be performed.

ListOps. We can also identify how the NDR processes the data in ListOps. Dif-
ferent attention heads play different roles. We highlight the core observations
in Fig. 5.4. The input for this example is: [SM [MED [MIN 1 7 4 [MAX 2 4 0
8 9 ] ] 7 ] 5 [MED 8 5 8 ] 0 7 ]. First of all, we find that there is a head
(head 13 in Fig. 5.4, first row) which seems to be responsible for connecting
operators and their arguments: the operands/arguments of an operation attend



77 5.3 Analysis

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 0

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 1

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 5

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 10

B f d c c f h a i b a
00

1 E

t = 0

B f d c c f h a i b a
00

1 E

t = 1

B f d c c f h a i b a
00

1 E

t = 5

B f d c c f h a i b a
00

1 E

t = 10

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.3: Example visualization of NDR. For other models, see Appendix D.4.
Top: Attention map for different steps. The x/y-axis corresponds to source/tar-
get positions, respectively. Each position focuses on the column to the right,
except the last one where the result is read from, which focuses on the last oper-
ation. The focus becomes clear only once the result is available. Bottom: gate
activations for different steps/layers. The gates remain closed until the data de-
pendencies are satisfied.

to the operator. In step 0 (t = 0 in the figure), we can recognize that the opera-
tions at the deepest level, namely MAX and the second MED have all the arguments
ready (as is shown by vertical lines on the columns corresponding to MAX and
MED). The model indeed identifies that these two operations are ready to be ex-
ecuted and that they can be processed in parallel (these arguments-to-operation
attention patterns remain for a few steps). We note that at this stage, the last
argument of MIN is not yet ready ([MIN 1 7 4 [MAX 2 4 0 8 9 ] ]). We can
see that only arguments which are already ready (1 7 4) attend to the opera-
tor (see the column of MIN). In step 1 (t = 1, 2nd row), we can see that head
5 copies the expected result of MAX, 9 to the column of the operator (we note
that this only requires one step as 9 is always the result of MAX when it is one
of the arguments of MAX). Similarly in step 2, head 7 (2nd row) seems to copy
the result of the second MED, 8 to the operator column. In step 3 (t = 3, 1st
row), we recognize that the result of MAX is marked as an argument for MIN in
head 13 which is responsible for communication between operators and their
arguments. This is shown by the new attention that appears at t = 3 in head
13 from the source position MAX to the target position MIN (a pattern that is not



78 5.3 Analysis

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

head 13, t = 0

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

head 13, t = 2

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

head 13, t = 3

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

head 13, t = 6

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

head 5, t = 1

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

head 7, t = 2

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

head 3, t = 6

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

max(head 3, head 5), t = 7

Figure 5.4: Example visualization of NDR on ListOps. The top row shows head
13 in different steps, which controls which arguments are used in which step.
The bottom row shows different heads in different key steps. Please refer to
Sec. 5.3 for the step-by-step description. More visualizations are provided in
the appendix: Fig. D.8 shows the max of attention over all heads for all steps,
Fig. D.9 shows all steps of head 13, and Fig. D.10 shows the corresponding
gates.

visible at t = 2). In head 3, t = 6 (2nd row), the expected result of MIN, which
is 1, is copied into the operator, similarly to the patterns observed above for
MAX and MED. In head 13, t = 6 (1st row), all arguments for the first MED are
now also recognized (the result of MIN which is 1, and 7). Finally in t = 7 (2nd
row), two heads, head 3 and head 5 seem to copy/gather two inputs needed
to compute the corresponding median, 1 and 7, and store them in the column
of the operator MED. A complete visualization of further steps can be found in
the Appendix D.4.2. We noticed that some of the heads do not seem to play a
key role; we focused on interpreting those that seem to participate in the main
computation. For ListOps, we also partially find the attention patterns described
above in the baseline transformer with relative positional encoding, at least on
some inspected examples, which also explains its rather high accuracy.



79 5.4 Discussion

5.4 Discussion

Learning adaptive serialization. The NDR architecture can be understood as
performing adaptive serialization of the problem. A key requirement for reusable
computation is to decompose the problem into reusable building blocks, typi-
cally applied in sequential steps. The granularity of the decomposition deter-
mines the degree of reusability: fusing operations in a single step makes the
processing faster (fewer steps), but also more specialized. Learning the most
granular solutions is thus preferable for generalization. At the same time, not all
processing should happen serially: branches of the computational graph that do
not have common data dependencies can be processed independently in paral-
lel, which we empirically observe in our NDR in the ListOps example (Sec. 5.3).
This enables the architecture to get away with a number of computational steps
that reflect the depth of the computational graph rather than the length of the
input.

Bottom up approach for improving model architectures. Transformers have
seen tremendous success in various application domains [Devlin et al., 2019;
Brown et al., 2020; Dosovitskiy et al., 2021]. Impressive results have been re-
ported when they are scaled up with a large amount of data [Brown et al., 2020;
OpenAI, 2022; Enryu, 2023]. On the other hand, simple tasks like those high-
lighted in the present work demonstrate that the transformer architecture still
struggles with basic reasoning. Particularly in algorithmic tasks, it is often the
case that a suboptimal choice of architecture/optimization method makes the
model fall back to simple memorization. We argue that it is crucial to look at
isolated problems that test specific generalization capability. This calls for a
bottom-up approach: building on toy tasks that focus on individual aspects of
generalization and using them for improving models.

5.5 Related Work

Gating inside transformers. Several prior works have proposed using some
sort of gating within transformer architectures [Parisotto et al., 2020; Chaabouni
et al., 2021]. Our proposed copy gate is different from those as it satisfies two im-
portant properties. First, our copy gate allows the model to skip the entire trans-
former layer (i.e., both the self-attention and the feedforward blocks) when the
gate is closed. Second, the gate function is conditioned on the attention output
such that the decision to open or close depends on information from all columns.



80 5.5 Related Work

Although multiple gating variants have been proposed by Parisotto et al. [2020]
to stabilize transformers for reinforcement learning, none of them can produce
this behavior. Empirically, we also tried out a few other gating variants which do
not satisfy the two properties above; we found them not to improve over regular
transformers in our preliminary experiments on compositional table lookup. Re-
cent work by Chaabouni et al. [2021] also makes use of “gating” in transformers
through a gated linear unit (GLU) activation function commonly used in convolu-
tional NNs [Dauphin et al., 2017]. Transformer models with such an activation
function have been reported to outperform RNN baselines on a systematic gen-
eralization task [Dessì and Baroni, 2019]. Unlike our copy gate or Parisotto et al.
[2020]’s gating, such a gating activation does not have the “residual” term (i.e. a
closed gate zeros out the input), which allows the model to skip a transforma-
tion. In a more general context, the benefits of GLU activation in transformers
vary between tasks [Irie et al., 2019; Shazeer, 2020]. In language modeling, no
improvement is typically obtained by using the standard highway gate instead
of the residual connection in transformers [Irie, 2020], while it yields improve-
ments when combined with convolutional layers [Kim and Rush, 2016].

Parameterized geometric distributions. Two recent works [Brooks et al., 2021;
Banino et al., 2021] have used a form of parametrized geometric distribution
(PGD; in the form of Eq. 5.7). Brooks et al. [2021] have used such a distribution
to parameterize the movement of a pointer on a sequence of instructions. Ban-
ino et al. [2021] have used it to implement adaptive computation time [Schmid-
huber, 2012; Graves, 2016]. We use the PGD to obtain a generic attention
mechanism as a replacement for the standard self-attention used in transformers
[Vaswani et al., 2017].

Compositional table lookup. CTL task was proposed for evaluating the com-
positional ability of NNs [Liska et al., 2018]. Previous work evaluated RNNs,
RNNs with attention, and transformers on this task with limited success [Hup-
kes et al., 2019; Dubois et al., 2020]. Dubois et al. [2020] have proposed a
special attention mechanism to augment the recurrent architecture. Although
they obtained good performance for the forward presentation order, the pro-
posed model failed in the backward one. In contrast, two of our approaches
(Sec. 5.2.1) achieve 100% generalization accuracy for both orders.

Positional encodings. Many previous works have focused on improving posi-
tional encoding [Schmidhuber, 1992d; Vaswani et al., 2017] for self-attention.



81 5.6 Conclusion

Most notably, relative positional encoding [Schmidhuber, 1992d; Shaw et al.,
2018b; Dai et al., 2019] was found to be useful for improving the systematic
generalization of transformers (see Chapter 4). Here, we also present two new
approaches related to positional encoding. One is the gated combination of ab-
solute and relative positional encoding (Sec. 5.2.1; details in Appendix D.2). We
show that absolute positional encoding can complement relative positional en-
coding. The former enables the model to always attend to a specific position, as
is needed for the CTL task in the last step, while the gating allows it to use relative
positional encoding for other positions/steps. Second, we introduce directional
encoding to augment geometric attention. Unlike positional encoding, which
can overfit to a range of positions seen during training, direction information is
found to be robust and to be a crucial augmentation of the geometric attention.

5.6 Conclusion

We proposed a new view on the internal operations of transformer encoders as
a dynamic dataflow architecture between transformer columns. This overcomes
two shortcomings of traditional transformers: the problem of routing and retain-
ing data in an unaltered fashion, which we solve by an additional copy gate, and
the problem of learning length-independent attention patterns, which we solve
by geometric attention. Our new model, the Neural Data Router (NDR), gen-
eralizes to compositions longer than those seen during training on the popular
compositional lookup table task in both forward and backward directions. NDR
also achieves near-perfect performance on simple arithmetic and ListOps tasks
in settings that test systematic generalization in terms of computational depth.
In general, the gates and the attention maps collectively make the architecture
more interpretable than the baselines.



Chapter 6

Inspecting Systematicity of Neural
Networks1

In Sec. 5 we improved the length generalization of transformers, which corre-
sponds to better productivity. However, another important aspect of generaliza-
tion is systematicity (see Sec. 1.1.1). It turns out that systematicity is significantly
more challenging compared to productivity.

The focus of this chapter is on systematicity: the capability to generalize to
unseen compositions of known functions/words. That is crucial for learning to
process natural language or to reason on algorithmic problems without an ex-
cessive amount of training examples. Some of the existing benchmarks (such as
COGS [Kim and Linzen, 2020] and PCFG [Hupkes et al., 2020]) are almost solv-
able by plain NNs with careful tuning [Csordás et al., 2021], while others, such
as CFQ [Keysers et al., 2020], are much harder. A recent analysis of CFQ by
Bogin et al. [2022] suggests that the difficult examples have a common character-
istic: they contain some local structures (describable by parse trees) which are
not present in the training examples. These findings provide hints for construct-
ing both challenging and intuitive (simple to define and analyze) diagnostic tasks
for testing systematicity. We propose CTL++, a new diagnostic dataset build-
ing upon CTL. CTL++ is basically as simple as the original CTL in terms of task
definition, but adds the core challenge of compositional generalization absent
in CTL. Such simplicity allows for insightful analyses: one low-level reason for
the failure to generalize compositionally appears to be the failure to learn func-
tions whose outputs are symbol representations compatible with inputs of other
learned neural functions. We will visualize this.

1For the full paper please see our work “The Neural Data Router: Adaptive Control Flow in
Transformers Improves Systematic Generalization” [Csordás et al., 2022b]

82



83 6.1 Original CTL

Well-designed diagnostic datasets have historically contributed to studies of
systematic generalization in NNs. Our CTL++ strives to continue this tradition.

6.1 Original CTL

Our new task (Sec. 6.2) is based on the CTL task [Liska et al., 2018; Hupkes
et al., 2019; Dubois et al., 2020] whose examples consist of compositions of
bijective unary functions defined over a set of symbols. Each example in the
original CTL is defined by one input symbol and a list of functions to be applied
sequentially, i.e., the first function is applied to the input symbol and the result-
ing output becomes the input to the second function, and so forth. The functions
are bijective and randomly generated. The original CTL uses eight different sym-
bols. We represent each symbol by a natural number, and each function by a
letter. For example, ‘d a b 3’ corresponds to the expression d(a(b(3))). The
model has to predict the corresponding output symbol (this can be viewed as a
sequence classification task). When the train/test distributions are independent
and identically distributed (IID), even the basic transformer achieves perfect test
accuracy [Csordás et al., 2022a]. The task becomes more interesting when test
examples are longer than training examples. In such a productivity split, which
is the common setting of the original CTL [Dubois et al., 2020; Csordás et al.,
2022a], standard transformers fail, while NDR and bi-directional LSTM work
perfectly.

6.2 Extensions for Systematicity: CTL++

To introduce a systematicity split to the CTL framework, we divide the set of
functions into disjoint groups and restrict the sampling process such that some
patterns of compositions between group elements are never sampled for training,
only for testing. Based on this simple principle, we derive three variations of
CTL++. They differ from each other in terms of compositional patterns used
for testing (excluded from training) as described below. We’ll also visualize
the difference using sampling graphs in which the nodes represent the groups,
and the edges specify possible compositional patterns. The colors of the edges
reflect when the edges are used: black for both training and testing, blue for
training, and red only for testing. Note that variants ‘A’ and ‘R’ are easy to define
by simple grammar, but the ‘S’ variant has restrictions on the transition symbols,
making it very long to describe. Thus, we choose to use the sampling graph



84 6.2 Extensions for Systematicity: CTL++

IN

Ga

Gb

OUT

Figure 6.1: Sampling graph for variant ‘A.’

representation for all variants.

Variation ‘A’ (as in ‘Alternating’). Here functions are divided in groups Ga

and Gb. During training, successively composed functions are sampled from
different groups in an alternating way—i.e., successive functions cannot be from
the same group. During testing, however, only functions from the same group
can be composed. The sampling graph is shown in Fig. 6.1. Importantly, the
single function applications are part of the training set, to allow the model to
learn common input/output symbol representations for the interface between
different groups.

Variation ‘R’ (as in ‘Repeating’). This variant is the complement of variation
‘A’ above. To get a training example, either Ga or Gb is sampled, and all func-
tions in that example are sampled from that same group for the whole sequence.
In test examples, functions are sampled in an alternating way. There is thus no
exchange of information between the groups, except for the shared input em-
beddings and the output classification weight matrix. The sampling graph is like
in Fig. 6.1 for ‘A’ except that blue edges should become red and vice versa (see
Fig. E.1 in the appendix).

Variation ‘S’ (as in ‘Staged’). In this variant, functions are divided into five
disjoint groups: Ga1, Ga2, Gb1, Gb2 and Go. As indicated by the indices, each
group belongs to one of the two paths (‘a’ or ‘b’) and one of the two stages (‘1’
or ‘2’), except for Go which only belongs to stage ‘2’ shared between paths ‘a’
and ‘b’ during training. The corresponding sampling graph is shown in Fig. 6.2.
To get a training example, we sample an integer K which defines the sequence
length as 2K + 1, and iterate the following process for k ∈ [0, .., K] and i =

2k: we first sample a path p ∈ {a, b} and then a function fi from Gp1 and a
function fi+1 from Gp2 ∪Go. Each example always contains an even number of



85 6.2 Extensions for Systematicity: CTL++

IN •

Ga1

Gb1

Ga2

Go

Gb2

• OUT

Figure 6.2: Sampling graph for Variant ‘S’

functions, and no isolated single function application is part of training, unlike
in the previous two variants. For testing, we sample a path p ∈ {a, b} and a
function fi from Gp1, but then sample a function fi+1 from G{a,b}\{p}2, which
results in a compositional pattern never seen during training.

The unique feature of this variant is the use of two stages: as can be seen
in Fig. 6.2, during training, given a path p ∈ {a, b}, outputs of any functions
belonging to Gp1 are only observed by the functions belonging to Gp2, i.e., the
stage ‘2’ group belonging to the same path p, orGo. Hence, ifGo = ∅, the model
has no incentive to learn common representations for the interface between Ga1

andGb1: to solve the training examples, it suffices to learn output representations
of Ga1 which are ‘compatible’ with the input representations of Ga2; similarly
for Gb1 and Gb2. There is no reason for outputs of Ga1 to be compatible with
the inputs of Gb2 (analogously for Gb1 and Ga2) which is required at test time.
The size of Go is our first parameter for controlling task difficulty (the y-axis of
Fig. 6.4 which we will present later).

We introduce further restrictions: for each function f ∈ Go, we define a set
of symbols Sf

a for Ga1 (and Sf
b for Gb1), and we only allow for sampling f if the

output symbol of function from Ga1 (or Gb1) belongs to Sf
a (or Sf

b ). This allows
for defining another control parameter: the number of overlapping symbols be-
tween Sf

a and Sf
b (same for all f ; the x-axis of Fig. 6.4). Note that we ensure that

the union of shared symbols defined for functions in Go cover all possible sym-
bols. This might not be the case in a more realistic scenario, but as we’ll see,
the standard models already struggle in this setting. By controlling these two
parameters, we precisely control the degree of overlap offered by Go in terms
of both the number of functions and symbols. Ideal models should be “sample
efficient” in terms of this overlap, since we cannot expect the training set to con-
tain all combinations of such overlaps in a practical scenario with semantically
rich domains such as natural language.



86 6.3 Results

6.3 Results

Weevaluate standard CTL-testedmodels on the newCTL++ task, including: the
transformer [Vaswani et al., 2017] with shared layers [Dehghani et al., 2019], the
neural data router (NDR) [Csordás et al., 2022a], and the bi-directional LSTM
[Graves et al., 2005]. Recall that both NDR and bi-directional LSTM are reported
to perfectly solve the original CTL’s length generalization split [Csordás et al.,
2022a], unlike the transformer. Further experimental details can be found in
Appendix E.1.

Model Dataset
Accuracy

IID OOD

Bi-LSTM
A 1.00± 0.00 0.95± 0.03

R 1.00± 0.00 1.00± 0.00

Transformer
A 1.00± 0.00 0.21± 0.09

R 1.00± 0.00 0.75± 0.25

NDR
A 1.00± 0.00 0.34± 0.26

R 1.00± 0.01 0.75± 0.27

Table 6.1: Results on the task variants ‘A’ and ‘R.’ Mean and standard deviation
are computed using 25 seeds.

6.3.1 Results on Variants ‘A’ and ‘R’

Tab. 6.1 shows the performance overview for ‘A’ and ‘R.’ The OOD (out-of-
distribution) column indicates the train/test data sampling processes described
above. As a reference, we also report the IID cases where the training example
sampling graph is also used for testing. Our initial expectation was that the
pressure from shared input/output embeddings is sufficient for these models to
learn common symbol representations for all functions. However, we observe
that only the bi-LSTM solves these tasks consistently across seeds. Interestingly,
the NDR, which perfectly performs on the length generalization split of CTL and
beyond [Csordás et al., 2022a], performs poorly on both the ‘A’ and ‘R’ variants
of CTL++. Tested with 25 seeds, only 32% of the seeds (out of 25) achieve over
95% accuracy for NDR on ‘R’ (20% for the standard transformer). The success



87 6.3 Results

q
r
s

t
u

v
w

x
y

z
A

B
C

D
E

F
a

b
c

d
e

f
g

h
i

j
k

l
m

n
o

p

qr st uv wx yz AB CD EF ab cd ef gh ij klmn op

C1

C2

0.0

0.2

0.4

0.6

0.8

1.0

Gb Ga

Gb

Ga

(a) Example for symbol ‘6’. Perfect cluster-
ing w.r.t. the function groups is observed.

a
b

c
e

f
j
m

o
p

d
g

h
i
k

l
n

q
r
s

t
u

v
w

x
y

z
A

B
C

D
E

F

ab ce fjmo pd gh ik ln qr st uv wx yz AB CD EF

C1

C2

0.0

0.2

0.4

0.6

0.8

1.0

Ga Gb

Ga

Gb

(b) Example for symbol ‘3’. Partial cluster-
ing w.r.t. the function groups is observed.

Figure 6.3: Cosine similarity of output representations of different functions
representing the same symbol for the NDR with a seed that fails on ‘R.’

rate is 0% for the ‘A’ variant2. These simple tasks thus turn out to be good first
diagnostic tasks for testing systematicity.

Analysis. The small input/output space of this task allows for an exhaustive
analysis of the learned symbol representations. Specifically, given an output
symbol s′, for each function f ∈ Ga ∪ Gb, we can find a unique input symbol
s such that s′ = f(s) (because all functions defined for this task are bijective).
Hence, for a fixed symbol s′, for all functions f , we can extract the learned
vector representation of this symbol s′ at the output of f as the vector of the layer
beneath the final classification layer when we feed ‘f s’ to the network. Then
we can compare the extracted representations (of a fixed symbol for different
functions) by computing their cosine similarities.

Here we compare representations learned with successful/failed seeds for
NDR in variation ‘R.’ Fig. 6.3a and 6.3b show the results for two different (out-
put) symbols ‘6’ and ‘3’ from the same failed seed. In both cases we observe
two clusters (C1 and C2): two separate/different representations are learned for

2‘A’ turns out to be harder than ‘R.’ We speculate that in both ‘A’ and ‘R’, given that the train-
ing set contains single function applications with shared input/ouput embeddings, the learned
symbol representation of all functions should be compatible with each other to some extent,
but with some “deviation” from perfect compatibility in case of failure. Such “deviations” might
accumulate in case of ‘A’ where we sample all functions in each sequence from a single group
at test time.



88 6.3 Results

2 3 4 5 6
No. of symbols/function

4

8

12

16

N
o.

of
fu

nc
tio

ns

0.12± 0.0 0.15± 0.0 0.16± 0.0 0.24± 0.1 0.27± 0.0

0.18± 0.0 0.23± 0.0 0.33± 0.1 0.35± 0.1 0.63± 0.1

0.20± 0.0 0.27± 0.1 0.37± 0.1 0.63± 0.1 0.97± 0.0

0.30± 0.0 0.43± 0.1 0.76± 0.1 0.93± 0.1 1.00± 0.0

Figure 6.4: Test accuracy of NDR on the ‘S’ variant. The total number of sym-
bols is 8, and the number of functions is 32. The y-axis shows the number of
overlapping functions, while the x-axis shows the number of symbols shared
between two groups for each function in Go during training (Sec. 6.2). Results
for the transformer and LSTM are reported in the appendix (Figs. E.3 and E.4).

the same symbol (by abuse of notation, we also refer to the corresponding rep-
resentations as C1 and C2). In the case of symbol ‘6’ in Fig. 6.3a, we observe
perfect/strict clustering in line with the group of the applied function; C1 and
C2 are representations of symbol ‘6‘ learned by functions belonging to Ga and
Gb respectively. This is problematic since functions in Ga never see symbol ‘6’
represented as C2 during training (analogously for functions in Gb with represen-
tationC1). As a consequence, during testing, when a function fa ∈ Ga is applied
after a function fb ∈ Gb, fb may output symbol ‘6’ represented as C2, and pass
it to fa, but in principle, fa can not “understand/interpret” C2 as representing
symbol ‘6.’ This naturally prevents cross-group generalization. In the case of
symbol ‘3’ shown in Fig. 6.3b, some of the functions yield the same symbol
representations as certain functions from the other group (see the cluster C2 at
the lower right: a good trend), but we still have a small cluster (C1 at the upper
left) consistent only among elements of Ga. Hence, cross-group generalization
can still fail because the functions in Gb never see symbol ‘3’ represented as C1

during training but only during testing. In contrast, for successful seeds, we do
not observe any of these clusters for any symbols (see Fig. E.5 in the appendix).
A single representation shared across all functions is learned for each symbol.
Further quantitative analysis can be found in Appendix E.2.

6.3.2 Results of Staged Variant ‘S’

As described in Sec. 6.2, variant ‘S’ is designed to evaluate models at differ-
ent task difficulty levels determined by the number of overlapping functions
and symbols during training. Fig. 6.4 shows the corresponding performance



89 6.4 Limitations

overview for NDR. The overall picture is similar for bi-LSTM and transformer
(see Figs. E.3 and E.4 in the appendix). We observe that to achieve 100% ac-
curacy, half of the possible functions should overlap (16/32), as well as most of
the possible symbols seen for each function (6/8). This implies an unrealistically
large amount of data for real world scenarios, where the “functions” might cor-
respond to more complex operations with multiple input arguments (as in the
CFQ case). This calls for developing approaches that achieve higher accuracy
in the upper left part of Fig. 6.4.

6.4 Limitations

Achieving 100% on this dataset may be a necessary condition for NNs capable
of systematic generalization, but certainly not a sufficient one. In practice, there
may be many reasons which prevent NNs from generalizing systematically in
other tasks or, more generally, on real-world data. Compare the original CTL
dataset for evaluating productivity: Csordás et al. [2022a] show that some mod-
els that achieve 100% on CTL still fail in other tasks such as ListOps. This is
why we refer to CTL++ as a simple diagnostic dataset for testing systematicity
of NNs. Nevertheless, it allows for uncovering certain important failure modes
of NNs.

6.5 Conclusion

Motivated by the historically crucial role of diagnostic datasets for research on
systematic generalization of NNs, we propose a new dataset called CTL++.
Unlike the classic CTL dataset, typically used for testing productivity, CTL++
is designed for testing systematicity. We propose three variants, ‘A,’ ‘R,’ and
‘S.’ Despite their simplicity, even the CTL-solving transformer variant fails on ‘A’
and ‘R.’ Using ‘S,’ we show that existing approaches require impractically large
amounts of examples to achieve perfect compositional generalization. The small
task size allows for conducting exhaustive visualizations of (in)compatibility of
learned symbol representations in outputs of functions with inputs of subsequent
functions. Of course, the ultimate goal is to go beyond just solving CTL++.
Nevertheless, we hope CTL++ will become one of the standard diagnostic
datasets for testing systematicity of NNs.



Chapter 7

Accelerating Transformer MLP
Layers: a Path Towards Scalable
NDRs1

We saw in Sec 5 that NDRs show good length generalization properties. But
in practice, if they are used for language modeling applications, they would be
very slow. The reason is the shared layers: they lose a significant number of
parameters, proportional to the number of layers in the network. If a single
layer is scaled up to compensate for this loss, it becomes prohibitively slow due
to the O(n3) complexity of matrix multiplication. Furthermore, memory usage
would also increase. Thus, as a first step towards scaling up NDRs, we focus
on using Mixture of Experts (MoEs) for accelerating standard transformers. This
avoids the extra difficulty that comes from sharing the layers and focuses only
on the efficiency of the MoEs.

Another motivation for improving MoEs comes from the recent impressive
results achieved by large language models (LLMs; [Radford et al., 2019; Brown
et al., 2020; Rae et al., 2021]). The vast resource requirement remains their
obvious limitation. In fact, most existing LLMs, such as GPT-3 [Brown et al.,
2020], cannot be trained, fine-tuned or even evaluated without access to enor-
mous compute. Many recent works strive to develop LLMs that, at least, enable
inference with limited resources (e.g., on consumer hardware), e.g., by build-
ing “smaller” yet capable LMs [Touvron et al., 2023; Taori et al., 2023; Chi-
ang et al., 2023] or developing post-training quantization methods [Zafrir et al.,
2019; Dettmers et al., 2022]. Although these methods are gaining popularity, a

1For the full paper please see our work “Approximating Two-Layer Feedforward Networks
for Efficient Transformers” [Csordás et al., 2023]

90



91

principled solution for resource-efficient neural networks (NNs) remains elusive.
One promising approach explored by several recent works on extremely

large LMs is the sparse mixture of experts (MoE; [Shazeer et al., 2017; Lewis
et al., 2021; Lepikhin et al., 2021; Fedus et al., 2022; Clark et al., 2022;
Chi et al., 2022]). Unlike their dense counterparts, MoEs only compute
a subset of their activations (i.e, only a few experts) at each step, offering
reduced computation and memory costs. However, MoEs are not yet generally
adopted as a generic/to-go approach, perhaps because of certain common
beliefs on MoEs: (1) They are hard to train (involving complex engineering
tricks to prevent collapsing), (2) they are not competitive against their dense
counterparts with the same number of parameters (in fact, prior work focuses
on FLOP-equal comparison, “unfairly” comparing MoEs against dense baselines
with many fewer trainable parameters), and finally, (3) they are reserved for
extremely-large models (they are rarely/never considered to further improve
the efficiency of “small” models). Indeed, even prior work on MoE-based
Transformer LMs only deploys MoEs in a few feedforward blocks; while ideally,
all such blocks should benefit from replacement by MoEs. Here, we challenge
these common beliefs and propose novel perspectives on MoEs.

We present MoEs within a unified framework of methods that approximate
two-layer feedforward networks, which includes product-key memories (PKMs
[Lample et al., 2019]) and top-k sparsification. This principled view not only
allows us to conceptually group and compare MoEs with PKMs, it also provides
insights on design choices for improving these methods. Our resulting MoE
Transformer variant outperforms our improved PKMs, and performs as well as
or even outperforms the dense baseline, while using a fraction of its compute
for both training and inference. Importantly, unlike prior work, we compare our
MoEs with dense baselines with the same number of total trainable parameters,
which is crucial for proper evaluation in language modeling. We conduct exper-
iments on the standard WikiText-103 (at two different model scales) and Enwik8
datasets. We demonstrate that MoEs are not limited to extremely-large LMs,
but useful as a generic approach for resource-efficient NNs at any scale, and in
line with the recent trend of improving “smaller” models [Touvron et al., 2023;
Taori et al., 2023; Chiang et al., 2023]. Finally, we release a CUDA kernel for
our MoE layers that allows faster wall clock time and large memory reduction
compared to the dense model.2 The kernel, along with the source code for all
experiments can be found on https://github.com/robertcsordas/moe.

2Since we are not CUDA experts, our implementation still has much room for further opti-
mization.

https://github.com/robertcsordas/moe


92 7.1 Background

7.1 Background

Transformers [Vaswani et al., 2017] have two main building blocks: the
self-attention layer [Schmidhuber, 1991, 1992c, 1993; Bahdanau et al., 2015;
Parikh et al., 2016; Cheng et al., 2016], and the two-layer feedforward, i.e,
multi-layer perceptron (MLP) block. Acceleration and memory reduction of the
self-attention are rather well explored (see e.g., linear attention [Katharopoulos
et al., 2020; Choromanski et al., 2021; Schmidhuber, 1991; Schlag et al.,
2021]), and very efficient implementations [Dao et al., 2022] are also available.
In contrast, resource-efficient MLP blocks are still underexplored. This is our
main focus, and it is of particular relevance today, as the proportion of the total
parameter counts, compute, and memory requirements due to MLP blocks in
Transformers is increasing in ever-growing LLMs.

Let dmodel, dff denote positive integers. Each Transformer MLP block con-
sists of one up-projection layer with a weight matrix W1 ∈ Rdff×dmodel where
typically dff = 4dmodel, and one down-projection layer with parameters W2 ∈
Rdmodel×dff that projects it back to the original size. Non-linearity (typically ReLU
[Fukushima, 1969]) is applied between these two layers. That is, an input
x ∈ Rdmodel is transformed to an output y ∈ Rdmodel as

u = ReLU (W1x) (7.1)
y =W2u (7.2)

where u ∈ Rdff , and we omit biases (as well as batch and time dimensions) for
simplicity.

Alternatively, this layer can be viewed as a key-value memory accessed by
attention (Vaswani et al. [2017]3,Geva et al. [2021]), where keys and values are
rows and columns of weight matricesW1 andW2:

W1 =


k⊺
1

k⊺
2
...
k⊺
dff

 (7.3)

W2 =

 v1 v2 . . . vdff

 (7.4)

3See the appendix “Two feedforward Layers = Attention over Parameter” in their paper ver-
sion “arXiv:1706.03762v3.”



93 7.2 Approximating 2-layer MLPs

where ki ∈ Rdmodel ,vi ∈ Rdmodel for i ∈ {1, ..., dff}. Then, the output is computed
as “attention”:

y =

dff∑
i=1

vi ReLU(k⊺
ix) =

dff∑
i=1

αivi (7.5)

where αi = ReLU(k⊺
ix) ∈ R≥0 are the “attention weights.” Note that αi = u[i]

where u[i] ∈ R denotes the i-th component of u ∈ Rdff in Eq. 7.1. Unlike
standard self-attention, the MLP block uses a ReLU activation function (instead
of softmax) without scaling.

It has been observed that, in practice, only a few of the factors k⊺
ix are

positive [Li et al., 2023; Shen et al., 2023], making the first layer’s output, i.e.,
u, sparse. Concretely, Shen et al. [2023] report that in a Transformer with
dmodel = 256 and dff = 1024, 10% of the channels account for 90% of the total
activation mass. We confirm this trend in our own preliminary study. Fig. 7.1
shows the average number of non-zero units in u of size dff = 2053 in our 47M
parameter dense model trained on WikiText-103 (we refer to App. F.1.2 for
more details). The number is below 200 for all layers. This suggests that the
MLP block can be approximated without a significant performance loss.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Layer

0

200

400

A
ct

iv
e

ch
an

ne
ls

Figure 7.1: Number of active channels in u in our dense 47M parameter model
on WikiText-103. Standard deviation over all tokens of the test and validation
set.

7.2 Approximating 2-layer MLPs

Here we present a unified view on methods to approximate 2-layer MLPs
(Sec. 7.1) that includes many existing methods such as MoEs (Sec. 7.2.3) and
PKMs (Sec. 7.2.2).



94 7.2 Approximating 2-layer MLPs

Preliminaries. Let ŷ ∈ Rdmodel denote an approximation of y ∈ Rdmodel in
Eq. 7.5. Let yi ∈ Rdmodel denote yi = αivi for i ∈ {1, ..., dff}. The core idea is
to approximate the sum in Eq. 7.5, i.e., y =

∑dff
i=1 yi by only keeping a subset

S ⊂ {1, ..., dff} of the key-value pairs, i.e., ŷ =
∑

i∈S yi. The intuition of this
approximation is as follows. We assume that a good approximation ŷ of y is
the one that minimizes their Euclidean distance e = ||ŷ − y||22 ∈ R, which can
now be expressed as e = ||

∑
i∈S̄ αivi||22 where S̄ denotes the complement of

S, i.e., S̄ = {1, ..., dff} \ S. Since we have e = ||
∑

i∈S̄ αivi||22 ≤
∑

i∈S̄ αi||vi||22
(triangle inequality; where the equality is achieved when vi are orthogonal), this
upper-bound

∑
i∈S̄ αi||vi||22 can be minimized if each term ci = αi||vi||22 ∈ R

are small. If we further assume that all value vectors vi have the same norm,
the crucial factor for approximation quality is reduced to the attention weights
αi. In this context, we also call αi the contribution of key-value pair i.

Let K be a positive integer. The general idea of all the methods discussed
in this work is to keep K pairs (ki, vi) whose contribution αi is the highest and
ignore other pairs with low contribution. The goal is to find the best mecha-
nism to select such K pairs. Here, we discuss three variants: Top-K activation
(Sec. 7.2.1), Product-Key Memories (PKMs, Sec. 7.2.2), and Mixture of Experts
(MoEs, Sec. 7.2.3).

7.2.1 Top-K Activation Function

The most straightforward implementation of the approximation described above
is the top-K activation function:

Ex = arg topk(u, K) ⊂ {1, ..., dff} (7.6)

ŷ =
∑
i∈Ex

αivi (7.7)

Unfortunately, this only saves less than half of the entire computation: while
this allows us to reduce computation of Eq. 7.2, no computation can be saved
in Eq. 7.1 because full computation of u = ReLU (W1x) is required for Eq. 7.6.
Going beyond this requires us also to introduce some approximation to Eq. 7.6
as in PKMs (Sec. 7.2.2) and MoEs (Sec. 7.2.3).

7.2.2 Product-Key Memories (PKMs)

Product-Key memories [Lample et al., 2019] consist of replacingW1 ∈ Rdff×dmodel

in Eq. 7.1 by two matrices Wa,Wb ∈ R
√

dff×
dmodel

2 . It slices the input vector



95 7.2 Approximating 2-layer MLPs

x ∈ Rdmodel into two halves, xa,xb ∈ R
dmodel

2 , so that x = xa|xb, where | denotes
concatenation. The matrix multiplication is then performed on these smaller
vectors: ua = Waxa and ub = Wbxb. Then u ∈ Rdff is calculated by com-
bining the elements of ua ∈ R

√
dff and ub ∈ R

√
dff in all possible ways (i.e.,

Cartesian products), similarly to the outer product, but using addition instead of
multiplication, i.e., for all i ∈ {1, ..., dff},

u[i] = ub[⌊i/
√

dff⌋] + ua[i mod
√
dff] (7.8)

In addition to applying Top-K at the output as in Sec 7.2.1, here Top-K can
also be used to accelerate the operation from above. By applying Top-K to ua

and ub before combining them to compute u, only the K2 << dff components
of u[i] have to be calculated, and they are guaranteed to contain the K biggest
components of the full u.

In the original formulation [Lample et al., 2019], PKMs use a softmax ac-
tivation function, taking inspiration from self-attention [Vaswani et al., 2017].
Instead, we will show how a non-competing activation function, such as ReLU
is a better choice (see Sec. 7.5.2).

7.2.3 Mixture of Experts (MoE)

Let NE, G denote positive integers. MoEs partition dff pairs of (ki, vi) (see their
definition in Sec. 7.1) into NE groups of size G each, such that G ·NE = dff. This
means that the weight matrices W1 ∈ Rdff×dmodel and W2 ∈ Rdmodel×dff (Eqs. 7.1-

7.2) are partitioned into matrices W e
1 ∈ R

dff
NE

×dmodel and W e
2 ∈ Rdmodel×

dff
NE for

e ∈ {1, ..., NE},

W e
1 =


k⊺
eG+1

k⊺
eG+2
...

k⊺
(e+1)G

 (7.9)

W e
2 =

 veG+1 veG+2 . . . v(e+1)G

 (7.10)

The output is computed as:

ŷ =
∑
e∈Ex

W e
2 s[e]ReLU(W e

1x) (7.11)



96 7.3 Existing MoE Variants

where s[e] ∈ R is the e-th element of vector s ∈ RNE computed by an expert
scoring function sel : Rdmodel → RNE (typically s = sel(x) = softmax(W3x)

with W3 ∈ RNE×dmodel ), and Ex denotes a subset of indices {1, ..., NE} resulting
from the Top-K operation on s, i.e., Ex = arg topk(s, K). Note that in some
variants, additional re-normalization is applied after Top-K, so that

∑
e∈Ex s[e] =

1, s[e] ≥ 0; we define such an operation as norm topk, see its exact definition in
App. F.1.1 4. The efficiency of MoEs comes from the fact thatNE ≪ dff, therefore
calculating s is cheap. Furthermore, G and K are chosen so that G ∗K ≪ dff,
so the calculation performed by experts is less expensive than dense MLP.

Given the notation above, it is straightforward to see that MoEs can also
be viewed as approximating 2-layer MLPs with a trainable component (i.e., the
selection function sel to produce s). Similarly to Eqs. 7.5 and 7.7, Eq. 7.11 can
be expressed as:

ŷ =
∑
e∈Ex

G∑
i=1

αeG+is[e]veG+i (7.12)

where, compared to Eqs. 7.5 and 7.7, the “contribution scores” of key-value pair
i (defined in Sec. 7.2/Preliminaries) have an additional factor s[e] of an expert
group e to which the key-value pair belongs.

The key challenge of MoEs is to learn an expert selection mechanism/func-
tion sel that assigns high scores to only a few experts (so that we can ignore
others without sacrificing performance), while avoiding a well-known issue,
called expert collapsing, where only a few experts are used and the rest are
never selected. To avoid this, some regularization is typically applied to the
selection score sel(x), encouraging a more uniform routing of experts across the
whole batch of tokens. We provide a comprehensive review of MoE variants
and their details in Sec. 7.3 and our improved version in Sec. 7.4.

7.3 Existing MoE Variants

Several variations of MoEs have been proposed with many different details.
Here, we briefly review the most popular and representative ones (e.g., we do
not cover those that make use of reinforcement learning for expert routing) before
describing our improved version in Sec. 7.4. We’ll review their expert selection
function and regularization method, and highlight their key characteristics.

4In the case of the softmax(·) activation function, this is equivalent to applying Top-K to the
logits before softmax.



97 7.3 Existing MoE Variants

Sparsely Gated Mixtures of Experts. Shazeer et al. [2017] have revisited MoEs
[Jacobs et al., 1991; Ivakhnenko and Lapa, 1965a] with the Top-K operation,
allowing a reduction in its resource demands. Their method is basically the
one described in Sec. 7.2.3 (with re-normalization after Top-K) except that they
use a noisy gating function:

sel(x) = softmax(W3x+N (0, 1) · ζ(W4x))

where W4 ∈ RNE×dmodel , the Gaussian noise term N (0, 1) is element-wise and
independent for each channel, and ζ(x) = log(1 + ex). They use the following
auxiliary regularization term for load balancing,

L = CV
(∑

x∈B

norm topk(sel(x))
)

(7.13)

where CV(x) = µx

σx
is the coefficient of variation and B is the set of all tokens

in the batch.
Key characteristics: The scores are normalized after the top-K operation

(with K > 1), which is equivalent to applying top-K before the softmax.

Switch Transformer. Fedus et al. [2022] integrate the MoE above into the Trans-
former to obtain their Switch Transformer. In terms of MoE details, one of Fedus
et al. [2022]’s key claims is that top-1 routing is enough. Their selection func-
tion is simply: sel(x) = softmax(W3x), but they propose a hard load-balancing
between experts that run on different hardware accelerators: At most µ |B|

NE
to-

kens are allowed to be routed to an expert, where µ ∈ R>0 is the capacity factor
(typically between 1 and 1.5), defining how many times more tokens can be pro-
cessed by one expert compared to the ideal case of uniform routing. Each expert
is forbidden to process more than this number of tokens. For regularization, the
fraction of the tokens f ∈ RNE processed by each expert, and the average selec-
tion probability p ∈ RNE for each expert are calculated (K = 1; top-1 is used)
as:

fi =
1

|B|
∑
x∈B

1{i ∈ arg topk(sel(x), K)} (7.14)

p =
1

|B|
∑
x∈B

sel(x) (7.15)

L = NEf · p (7.16)

where 1 denotes the indicator function (which is equal to 1 if the argument
is true, and 0 otherwise), and · denotes dot product. Intuitively, this serves as



98 7.3 Existing MoE Variants

an adaptive regularization that penalizes experts that are often used with high
“weights.” Additionally, they use dropout with a high drop rate (40%) in experts
(but only 10% in the normal layers).

Furthermore, Fedus et al. [2022] also proposes to initialize experts with
√

0.1
G

.
As we’ll see in Sec. 7.4, we use a modified version of this scheme.

Note that applying Top-K after softmax encourages collapse: if the score of
the selected expert is increased, the scores of all other experts are automatically
decreased. This is not the case for Shazeer et al. [2017]: In their method, only
the selected experts compete with each other, so if their presence is beneficial,
their score can be increased.

Key characteristics: Note that Top-1 is applied after the softmax without
renormalization.

BASE layers and S-BASE. Inspired by the routing strategy and the hard capacity
factor of the Switch Transformer, Lewis et al. [2021] propose BASE layers. They
use top-1 routing and a sigmoid activation σ in the selection function:

sel(x) = σ(W3x) (7.17)

Now instead of using arg topk, they solve the following linear assignment prob-
lem to find the index ex ∈ {1, ..., NE} of the expert to which each input x ∈ B
is routed,

maximize
ex∈{1,...,NE},x∈B

∑
x∈B

sel(x)[ex] (7.18)

s.t. ∀i ∈ {1, ..., NE},
∑
x∈B

1{ex == i} =
|B|
NE

This guarantees uniform assignment of experts, which is efficient for multi-
accelerator training. The output is computed using Eq. 7.11 with Ex = {ex}
(a set with a single element; “top-1”). However, in inference time, such a bal-
ance is not possible because not all tokens of the sequence are available at each
step; Ex = {arg max (sel(x))} is used instead. Lewis et al. [2021] show that,
while during training, the routing is enforced to be completely uniform, during
the test time, the distribution looks exponential (in fact, this is similar to the
Switch Transformer but more balanced for BASE).

The algorithm for solving the linear assignment problem (Eq. 7.18) is
difficult to implement efficiently on modern accelerators. Clark et al. [2022]
have proposed to use the Sinkhorn algorithm [Sinkhorn, 1964; Sinkhorn and



99 7.4 Improving Mixture of Experts

Knopp, 1967] instead (resulting in a model called Sinkhorn-BASE or S-BASE), to
approximate the solution to this problem (note that similar routing is indepen-
dently discussed by Kool et al. [2021]). They report that this works well, while
being simpler to implement. Thus, our reimplementation of BASE is S-BASE
using the Sinkhorn algorithm.

Key characteristics: During training, Sinkhorn iterations are used on scores
to obtain a balanced assignment. Singmoid activation is always applied to com-
pute the weighting score.

Overall, all above load-balancing methods are rather complex. We propose
a simpler but effective approach for MoEs in Sec. 7.4.

7.4 Improving Mixture of Experts

Here we present our improved MoE variant, which we call σ-MoE. We conduct
thorough ablation studies on our design choices in Sec. 7.5.

σ-MoE Expert Selection Function. Our MoE makes use of the top-K operation
(unlike BASE). The activation we use on the selection function is sigmoid (as in
Eq. 7.17 of BASE) instead of softmax used in Switch Transformer and Sparsely
Gated Mixtures of Experts. This choice is motivated by the view of MoEs as
approximate 2-layer MLPs (Sec. 7.2). In fact, softmax introduces competition
between experts. No such competition between channels is used in the regular
2-layer MLP (that is, there is no constraint on αi in Eq. 7.5). This suggests that,
in principle, no competition is needed between terms in the sum of Eq. 7.12
in the MoE either, to induce sparsity. It is also well known to practitioners that
softmax as regular activation negatively affects the trainability of standard MLPs.
Therefore, we opt for sigmoid instead of softmax; we experimentally confirm
that this is indeed a good choice.

Additionally, looking at MoEs in this framework gives us hints on combining
them with Top-K activation (Sec. 7.2.1) for further acceleration. We can
calculate ue = s[e]ReLU(W e

1 x) (Eq. 7.11) for the selected experts and perform
an additional Top-K to keep the highest units among them and set the rest to
zero. We leave this for future work.

σ-MoE Initialization. Another design choice guided by the MLP-
approximation view of MoEs (Sec. 7.2) is the initialization scheme for
experts. Typically, experts are assumed to be independent, and the standard
deviation of the initialization [Glorot and Bengio, 2010; He et al., 2015] ofW e

2



100 7.4 Improving Mixture of Experts

is calculated based on G instead of dff. Our experiments in Sec. 7.5.3 show that
this is suboptimal.

In contrast, we initialize all weight matrices identically to the pre-layernorm
dense baselines, not taking in account the smaller size of the individual experts,
i.e., W e

1 ∼ N (0,
√

2
dmodel·nlayers

) and W e
2 ∼ N (0,

√
2

dff·nlayers
) where nlayers denotes

the number of layers, using dmodel and dff instead of G.
We also take special care when initializing W3 of the selection function.

We initialize it to a normal distribution with the same standard deviation asW e
1 ,

but we also ensure that the rows ofW3 have the same norm. This can be easily
achieved in practice by initializing the weights to W ′

3 ∼ N (0, 1), rescaling its
rows to norm 1, and then rescaling the whole matrix again to have the desired
standard deviation. Note that each scalar score in s is the dot product of a row
ofW3 and x. This initialization method ensures that only the angle between x
and the rows ofW3 initially affects the score s, rather than an additional random
factor resulting from initialization.

σ-MoE Regularization. As already noted in Sec. 7.3, existing regularization
methods for load-balancing are complex (e.g., Switch Transformers need to deal
separately with the actual selection distribution and the scores, Sparsely Gated
Mixture of Experts needs noise in the selection function). On the contrary, we
propose to simply maximize the entropy of the selection distribution p ∈ RNE

calculated across the entire batch. Let B be the set of all tokens in the batch
(counting through both batch and time dimensions). We introduce the follow-
ing regularization term L:

p =
1

|B|
∑
x∈B

softmax(W3x) (7.19)

L =

NE∑
e=1

p[e] logp[e] (7.20)

Furthermore, we propose to randomly drop complete experts during training;
we refer to this as expert dropout. Unlike the standard dropout on the activation
level, we do not apply rescaling, i.e.,

sel(x) =
{
σ(Wsx)⊙m if training

σ(Wsx) otherwise
(7.21)

where m ∈ {0, 1}NE , m ∼ Bernoulli(1 − δ), where δ is the dropout rate, and
⊙ is the element-wise product. This prevents the dropped experts from being



101 7.5 Experiments

selected, while not affecting the other ones. We experimentally show that our
regularization method (Eq. 7.20) and expert dropout (Eq. 7.21) are both effective
despite their simplicity.

7.5 Experiments

Our experimental setup is based on Dai et al. [2019]’s Transformer XL with some
modifications: we use pre-layer norm and reduce the number of training steps to
100k to reduce the computational budget. Furthermore, to match the parameter
counts between the baseline and MoEs, we slightly modify the hyperparameters
of the baselines [Dai et al., 2019]. In fact, our MoE CUDA kernel can only work
with dimensions divisible by 4. We round the original sizes up to the next suit-
able number, e.g., we change dmodel of our 47M-parameter WikiText-103 model
from the original 410 to 412. Furthermore, since MoEs require additional param-
eters for the expert selection function, we compensate for these by increasing
the dff of the baseline model to match the number of parameters. Our modified
baseline model on Enwik8 still has 41M parameters and performs similarly to
the original Transformer XL (see Tab. 7.1). For WikiText-103, we use subword
units [Sennrich et al., 2016] using SentencePiece tokenizer [Kudo and Richard-
son, 2018] instead of the word-level vocabulary, to avoid extra tricks required to
reduce the parameter count and compute requirement resulting from the huge
vocabulary size. On WikiTest-103, we consider two different model sizes: a
47M-parameter one (denoted by “WT-S” for “small”), and a 262M-parameter
one (“WT-B” for “big”). We refer to Enwik8 as “E8” in certain tables. For more
details, see Appendix F.2.

For all the methods considered, we use them in every MLP block of the
model, which is not a common practice in the literature. Typically, MoE (or
other approximation methods) is used only once every nth layer or even only in
one layer. This is not satisfactory since our goal is to find a generally applicable
method that can accelerate all layers throughout the model. Moreover, this
amplifies the difference between different methods, helping to better illustrate
the effects of each of the design choices.

7.5.1 Top-K

We first evaluate the Top-K method (Sec. 7.2.1). This standalone evaluation is
important as Top-K is the basis of both the PKM and the MoE approximations.
Tab. 7.1 shows the results. We observe that not only Top-K in the MLP blocks



102 7.5 Experiments

preserves the performance of Transformers, it even improves performance.
We hypothesize that these improvements are due to the reduction in feature
interference as described by Elhage et al. [2022]. However, we obviously
cannot arbitrarily reduce K; there should be a trade-off between the denoising
effect and the capacity of the network. Here, the optimal value we find is
K = 128, independently of model size and dataset.

Dataset #params dff K bpc/perplexity

Enwik8 41M 2053 - 1.08
41M 2053 128 1.07
41M 2053 256 1.08
41M 2053 512 1.08

WikiText 103 47M 2053 - 11.81
47M 2053 64 11.86
47M 2053 128 11.74
47M 2053 256 11.74
47M 2053 512 11.68

WikiText 103 262M 4110 - 9.46
262M 4110 128 9.26
262M 4110 256 9.34
262M 4110 512 9.36

Table 7.1: Effects of the top-k activation function on the perplexity (WikiText-
103) and bits/character (Enwik8).

7.5.2 Product-Key Memory (PKM)

Our view of Sec. 7.2 suggests using a non-competitive activation such as ReLU
instead of the softmax used in the original PKM [Lample et al., 2019]. Our
experiments confirm the benefits of this choice (Tab. 7.2): the performance of
the ReLU variants is much closer to the dense baseline (see also related findings
by Shen et al. [2023]). But even the best PKM models underperform the dense
baselines, indicating the fundamental limitation of PKMs. Note that, as stated
above, we conduct a careful comparison between the approximation method
(here, PKM) and the dense baseline using the same number of parameters. For
more results and details on PKM, we refer to App. F.1.3.



103 7.5 Experiments

Variant Nonlin WT-S WT-B E8

Dense Baseline ReLU 11.81 9.46 1.08

PKM Softmax 13.96 11.10 1.16
ReLU 12.77 9.98 1.11

Table 7.2: Performance of the parameter-matched PKM models. We provide
more results in Appendix/Tab. F.1.

7.5.3 Mixture of Experts (MoE)

Here we evaluate our σ-MoE models (Sec. 7.4).

Main results. Tab. 7.3 shows the main results; our σ-MoE models match the
performance of their parameter-equal dense baselines, while achieving signifi-
cant memory and compute reduction. These models use K = 4 for NE = 16 or
NE = 32, which is a “moderate” level of sparsity but already offering significant
compute reduction as shown in the column “% FLOPs”; concrete compute and
memory reduction is further shown in Fig. 7.2, (as well as Figs. F.5 and F.6 in the
appendix). Naturally, there is a limit on the minimum sparsity level to preserve
good performance of MoEs, which is determined by several factors. First, we em-
pirically find that experts with a group size of G < 128 generally degrade perfor-
mance. Second, our benchmarks with the Top-K operation (Tab. 7.1) and our ab-
lations (Tab. F.4 in the Appendix) show that the minimum number of simultane-
ously active channels G ·K need to be above a certain critical threshold (usually
around 256-512). Finally, we match the number of parameters of the baseline
model; this is the last constraint. Under these constraints, we find that the perfor-
mance of dense baselines can be matched using 25% of the required FLOPs and
memory for activations for our small models, and 12.5% sparsity for the big one
(note that the FLOPs here do not take into account the linear projection used to
select the experts, which is negligible within the range of NE used here).

Increasing NE and Impact of Sparsity. The above results demonstrate
that our σ-MoEs can be configured to match the desired performance with
fewer resources. Here, we conduct an extra experiment where we naively
increase NE (while keeping K = 4) from 16 to 128. This increases the number
of parameters to 238M, while keeping the speed and memory requirements
comparable to the original model (column “WT-S*” in Tab. 7.4). This model
achieves a test perplexity of 10.37, which is worse than 9.46 of the 262M dense
model (see Tab. 7.1). Indeed, even when the parameter count is matched, there



104 7.5 Experiments

Dataset Model #params % FLOPs bpc/ppl

Enwik8 Dense 41M 100.0% 1.08
σ-MoE 41M 25.0% 1.08

WikiText-103 Dense 47M 100.0% 11.81
σ-MoE 47M 25.0% 11.71

WikiText-103 Dense 262M 100.0% 9.46
σ-MoE 262M 12.5% 9.44

Table 7.3: Performance of parameter-batched σ-MoEs on perplexity (WikiText-
103) and bits/character (Enwik8).

8 32 64 128 256
Number of experts (NE)

0

200

Ti
m

e
(m

s) MLP
MoE

0.0

2.5

M
em

or
y

(G
B

)

MLP
MoE

Figure 7.2: Execution time and memory usage of a forward-backward pass of
a single MLP and MoE layer. |B| = 32768, corresponding to a batch size 64
and sequence length 512, dmodel = 512, K = 4, and dff = G · NE. Full/dashed
lines show the execution time/memory consumption, respectively. As they are
both linear with similar slopes, they are almost indistinguishable. Even our sub-
optimal CUDA kernel is faster starting from 16 experts. Measured on an RTX
3090 with PyTorch 2.01 and CUDA 11.

are other bottlenecks that are crucial, e.g., here dmodel is much smaller (412 vs.
1024). We construct another dense baseline by setting every hyperparameter
like in the 47M model, except dff, which is set to 16480 to match the number
of parameters of the NE = 128 MoE. This baseline achieves a perplexity of
10.03: thus, the gap between the scaled-up MoE and its dense counterpart
still remains significant (10.37 vs 10.03), unlike with the MoE with moderate
sparsity. This indicates the importance of controlling MoE sparsity to preserve
its performance against the dense baseline.

Comparison to Existing MoEs. We also compare our σ-MoE to other MoE
variants (Sec. 7.3), namely Switch Transformer [Fedus et al., 2022], S-BASE
[Clark et al., 2022]5 and the basic softmax variant. Tab. 7.4 shows the results.

5Unlike the original ones, our implementation does not enforce capacity factor-based hard



105 7.5 Experiments

As Switch Transformer and S-BASE select only one single expert (K = 1), we in-
crease the expert size by a factor of 4 (instead of G = 128 in our models, we use
G = 512), and we decrease NE by the same factor for fair comparison in terms
of the parameter count. Neither of them uses our proposed expert dropout. For
Switch Transformer, we test a variant with standard dropout in the experts (see
App. F.2 for details), and a version without. We also extend S-BASE to K = 4,
which is similar to ours, except for the balancing method. Even considering all
these cases, our σ-MoE outperforms Switch Transformer and S-BASE.

Ablation Studies. Finally, we conduct ablation studies of individual design
choices (Sec. 7.4). Tab. 7.4 shows the results. Standard dropout instead of
expert dropout leads to performance degradation for most of the cases, except
the model with NE = 128 experts. The softmax-based selection functions (with
and without re-re-normalization) consistently perform worse than our sigmoid
one. The same is true for standard initialization ; ours is better. Interestingly,
removing all regularization methods degrades performance but does not entail
catastrophic collapse even with NE = 128. We also examine the best (G, K)
combinations, given a constant number (G · K) of active pairs ki, vi; we find
that high K = 4 works best within this range. Further analysis of our σ-MoE
can be found in App. F.1.4.

Analyzing expert utilization. A typical failure mode of MoEs is the expert
collapse, where only a few experts are used and the others are completely
ignored or underused. We asked the question to what extent our method is
affected by this issue. Thus, we computed the total proportion of the expert
selection weights (sel(x)) that the individual experts are assigned to on the
entire validation set of WikiText 103. A representative layer is shown in Fig. 7.3.
We use our WT-S* model from Tab. F.4, with 128 experts. Models with big
performance gap in Tab. F.4 (Switch Transformer and ablation of σ-MoE with a
softmax and renormalization, “softmax (renom.)”) can be easily distinguished
based on the selection statistics, showing that the expert collapse issue is at
the heart of the problem. The other methods perform comparably, and the
fine differences between them are not explained by expert collapse. In fact, for
the least used experts, σ-MoE shows more collapse, yet it performs better than
the other methods. Moreover, our perplexity-regularized models with expert
dropout, especially with sigmoid activation function, are capable of matching
the balancing effect of S-BASE without using the Sinkhorn activation function.
In general, we do not consider uniform expert activation to be optimal: we
expect expert specialization, and thus the frequency of their usage should

balancing.



106 7.6 Limitations

Dataset WT-S WT-S* WT-B E8
# params. (in M) 47 238 262 41

Switch Transformer 12.27 11.24 9.68 1.08
no dropout 11.88 11.10 9.77 1.10

S-BASE (K=4, G=128) 13.01 10.96 10.50 1.17
K = 1, G = 512 12.32 11.31 9.77 1.32

σ-MoE (K=4, G=128) 11.59 10.37 9.44 1.08
standard dropout 12.01 10.27 9.53 1.08
softmax (renorm.) 11.89 11.27 9.58 1.09
softmax (no renorm.) 12.05 10.54 9.62 1.09
standard init 11.80 10.59 9.67 1.08
no regularization 11.83 10.41 9.51 1.08
K = 8, G = 64 11.63 10.30 9.58 1.08
K = 2, G = 256 11.84 10.44 9.56 1.09
K = 1, G = 512 11.90 10.83 9.58 1.09

Table 7.4: Ablation studies. WT-S* is obtained by naively scaling NE in WT-S.
More details in Sec. 7.5.3 & Tab. F.4.

depend on the occurrence of the task they are performing.

7.6 Limitations

Our experiments show that if we naively increase the number of experts, the per-
formance gap betweenMoEmodels and their dense counterparts increases. This
indicates the need for careful control of sparsity and hyperparameters, which re-
mains a challenge for MoEs.

Our CUDA kernel is suboptimal and I/O limited. However, even in its
current form, it already yields significant performance boosts and memory
reduction. We expect that an expert CUDA programmer could improve the
speed of our kernel by at least a factor of 2.

We do not consider load balancing between hardware accelerators as is done
in Switch Transformers and S-BASE. Our goal is to make a larger model fit a single
accelerator, or multiple accelerators, in the standard data-parallel training. Our
preliminary experiments suggest that such balancing entails a performance hit.

We could not reproduce the 277M Enwik8 model of Dai et al. [2019],
because we were unable to fit the baseline model on any of our machines. We



107 7.6 Limitations

0 16 32 48 64 80 96 112
Expert

10−6

10−4

10−2

S
el

ec
tio

n
pr

op
or

tio
n

Layer 5

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

Figure 7.3: The total proportion of selection weights assigned to a given expert
(indicated on the x-axis) on the validation set of Wikitext-103 with our WT-S*
model from Tab. F.4. Experts are sorted by their popularity. A representative
layer of different models are shown. The models with a big performance gap
can be distinguished easily (Switch Transformer and σ-MoE with a softmax and
renormalization, “softmax (renom.)”). Their performance gap can be at least
partially attributed to expert collapse. However, it seems to be difficult to dis-
tinguish the fine performance difference between the rest of the models based
solely on the expert collapse phenomenon. Similar plots for all layers of the
network are shown in Fig. F.4 in the Appendix.

tried to use rotary positional encodings with PyTorch 2.0’s memory-efficient
attention to reducing its memory consumption; however, this resulted in a
significant performance degradation (even for the smaller models).

Our study focuses on end-to-end trainable MoEs. Other MoE methods [Irie
et al., 2018; Li et al., 2022a] that pre-train LMs on disjoint data, to recombine
them later into a single model, are out-of-scope.

Our study only considers standard Transformers; however, similar acceler-
ation methods are of utmost importance for shared-layer Transformers, such
as Universal Transformers [Dehghani et al., 2019] and NDRs [Csordás et al.,
2022a]. In fact, layer sharing dramatically reduces the number of parameters.
Compensating for this by naively increasing dmodel or dff results in prohibitively
high memory overhead and slow execution. In contrast, MoEs allow for an in-
crease in the number of parameters without such dramatic drawbacks. We leave
shared-layer MoEs for future work.



108 7.7 Conclusion

7.7 Conclusion

Our novel view unifies methods that approximate 2-layer MLPs, such as Top-K,
Mixture of Experts (MoE) and product-key memory (PKM) methods. While
Top-K by itself provides limited performance improvements and speedups,
further speedup requires PKM or MoE. A non-competitive activation function
inspired by our unified view improves both PKM and MoE. Further novel
enhancements of MoEs yield our σ-MoE which outperforms existing MoEs.
A σ-MoE with moderate sparsity performs as well as parameter-equal dense
baselines while being much more resource efficient. Our new insights improve
the training of language models with limited hardware resources, making
language modeling research more accessible.



Chapter 8

Conclusion and Future Work

In this dissertation, we have argued about the importance of learning algorith-
mic solutions instead of pure pattern matching and memorization. We discussed
the associated difficulties and the importance of inductive biases. We started by
improving one of the most promising architectures of the time [Csordás and
Schmidhuber, 2019], which led to better performance in reasoning tasks. Later,
we analyzed whether neural networks learn reusable modules [Csordás et al.,
2021], and found that they tend to resist reusing knowledge, which is crucial for
compositional behavior. Motivated by this and by the intuition that the structure
of the transformers seems to be well suited to represent computational graphs,
we managed to improve them significantly on a series of problems requiring gen-
eralization [Csordás et al., 2021]. We did this by adhering to the intuition intro-
duced in Sec. 1.3, introducing relative positional encodings and shared layers.
However, we found that these improvements are not enough to achieve length
generalization in algorithmic tasks. To fix this, we proposed an extension of the
transformer architecture, which, to our knowledge, is the first fully neural archi-
tecture capable of length generalization on CTL, Simple arithmetics and ListOps
datasets [Csordás et al., 2022a]. We continued by analyzing the systematicity
of the transformers and proposed a dataset to diagnose their behavior [Csordás
et al., 2022b]. We found that transformers struggle even with basic generaliza-
tion. Finally, motivated by the need to scale up shared layer transformers and
NDR, we focused on improving the speed and memory requirements of trans-
formers using MoEs. We showed that with a few simple modifications, they
can save a significant amount of computation and improve the execution speed
[Csordás et al., 2022b]. We believe that our work provides a significant con-
tribution to systematic generalization research and opens up interesting further
research directions.

109



110 8.1 Future Directions

8.1 Future Directions

Accelerating shared layer transformers and NDRs. The obvious way to go
forward is to apply the acceleration methods discussed in Sec. 7 to the shared
layer transformers and NDRs. Unfortunately, they pose additional nontrivial
challenges: e.g. the norm of the update change over layers, which causes the
MoE selection mechanism to reuse the same module in each layer. Additionally,
the total number of attention heads is also reduced by the factor of the number
of layers. This significantly degrades performance. The obvious solution is to
increase the total number of attention heads, which, however, results in a sig-
nificant slowdown and increase in memory usage. Alternatively, a conditional,
MoE-like attention could be developed. We found this to be a highly nontrivial
challenge.

Avoiding autoregressive masking. We hypothesize that autoregressive trans-
formers would perform poorly in generalization tasks even with all the improve-
ments introduced by NDR: the autoregressive mask does not permit building a
computation graph in the layers of the transformers as discussed in Sect. 5. The
information can flow just from left to right, meaning that only a single column
of a transformer is available to store all changes in the state introduced by any
new input token. Because of this, further research is needed in parallel decod-
ing techniques, or a novel memory and processing structure, which can enable
processing multiple columns at once. Alternatively, the advantages of combin-
ing NDRs with block-recurrent transformers [Hutchins et al., 2022] should be
considered.

Evaluating the resulting models on real-world datasets. We believe that the
above directions provide the minimal set of modifications required for transform-
ers to prefer learning more algorithmically. After implementing these changes,
the models should be thoroughly evaluated in reasoning tasks. It is reasonable to
believe that pre-training on a large amount of language data helps in improving
systematicity. However, if models are pre-trained, special care must be taken to
avoid dataset leaks.

Improving systematicity of neural networks. Systematicity proved to be more
difficult compared to productivity. It is not clear how this can be improved.
Perhaps discretizing the representations on certain points in the network could
improve the interoperability of the learned operations.



Appendix A

Further Details on Improving
Differentiable Neural Computers

A.1 Implementation Details

Here we present the equations for our full model (DNC-MDS). The other models
can be easily implemented according to the details in Sec. 2.2. We also highlight
the differences to the DNC by Graves et al. [2016]. We try to keep our notation
close to that of Graves et al. [2016].

Memory in step t is represented by matrix Mt ∈ RN×W , where N is the
number of cells, andW is the length of the memory word. The network receives
an inputxt ∈ RX and produces output yt ∈ RY . The network controller receives
the input vector xt concatenated with all R (number of read heads) read vectors
r1t−1, ..., r

R
t−1 from the previous step, and produces the output vector ht ∈ RS.

The controller can be an LSTM or feedforward network and may have one or
multiple layers. The controller’s output is projected to the interface vector ξt by
the matrix Wξ ∈ R2(W ·R)+4W+7R+3×S by ξt = Wξht. An intermediate output
vector vt ∈ RY is also generated: vt = Wyht. The output interface vector is
split into many sub-vectors controlling various parts of the network:

ξt = k
r,1
t ..kr,R

t |β̂r,1
t ..β̂r,R

t |kw
t |β̂w

t |êt|vt|f̂ 1
t ..f̂

R
t |ĝat |ĝwt |π̂1

t ..π̂
R
t |

m̂w
t |m̂

r,1
t ..m̂r,R

t |ŝf,1t ..ŝf,Rt |ŝb,1t ..ŝb,Rt (A.1)

Notation: 1 ≤ i ≤ R is the read head index; kr,i
t ∈ RW are the keys used

for read content-based address generation; βr,i
t = oneplus(β̂r,i

t ) are the read
key strengths (oneplus(x) = 1 + log(1 + ex)); kw

t ∈ RW is the query used for
content-based address generation for writes; βw

t = oneplus(β̂w
t ) is the write key

111



112 A.1 Implementation Details

strength; et = σ(êt), et ∈ RW is the erase vector which acts as an in-cell gate
for memory writes; vt ∈ RW is the write vector which is the actual data being
written; f i

t = σ(f̂ i
t ) are the free gates controlling whether to de-allocate the cells

read in the previous step; gat = σ(ĝat ) is the allocation gate; gwt = σ(ĝwt ) is the
write gate; πi

t = softmax(π̂i
t),π

i
t ∈ R3 are the read modes (controlling whether

to use temporal links or content-based look-up distribution as read address);
sf,it = oneplus(ŝf,it ) are the forward sharpness enhancement coefficients; sb,it =

oneplus(ŝb,it ) are the backward sharpness enhancement coefficients.
Special care must be taken with the range of the masksmw

t andmr,i
t . They

must be limited to (δ, 1), where δ is a small real number. A δ close to 0 might
harm gradient propagation by blocking gradients of masked parts of the key and
memory vector.

mw
t = σ(m̂w

t ) ∗ (1− δ) + δ mr,i
t = σ(m̂r,i

t ) ∗ (1− δ) + δ (A.2)

We suggest initializing biases for m̂w
t and m̂r,i

t to 1 to avoid low initial gradient
propagation.

Content-based lookup is used to generate an address distribution based on
matching a key against memory content:

C(M ,k, β,m)[i] = softmax(D
(
k ⊙m,M ⊙ 1mT )β

)
(A.3)

Compare this with C(M ,k, β,m)[i] = softmax(D (k,M )β) of Graves et al.
[2016].

Where D is the row-wise cosine similarity to numerical stabilization:

D(u,M )[i] =
u ·M [i, ·]

|u||M [i, ·]|+ ϵ
(A.4)

The memory is first written to, then read from. To write the memory, al-
location, and content-based lookup distributions are needed. The allocation
is calculated based on usage vectors ut. These are updated with the help of
memory retention vector ψt:

ψt =
R∏
i=1

(
1− f i

tw
r,i
t−1

)
(A.5)

ut =
(
ut−1 +w

w
t−1 − ut−1 ⊙ww

t−1

)
⊙ψt. (A.6)

Operation ⊙ is the elementwise multiplication. The free list ϕt = arg sort(ut)

is the list of indices of the memory locations sorted in ascending order of their



113 A.1 Implementation Details

usageut. Soϕt[1] is the index of the least used location. Then allocation address
distribution at is

at[ϕt[j]] = (1− ut[ϕt[j]])

j−1∏
i=1

ut[ϕt[i]]

The write address distribution ww
t ∈ [0, 1]N is:

cwt = C (Mt−1,k
w
t , β

w
t ,m

w
t ) (A.7)

wt = gwt [gat at + (1− gat )c
w
t ]

Memory is updated by (1 ∈ RN is a vector of ones, E ∈ RN×W is a matrix of
ones):

Mt =Mt−1 ⊙ψt1
T ⊙ (E −ww

t e
⊺
t) +w

w
t v

⊺
t (A.8)

Compare this to theMt =Mt−1 ⊙ (E −ww
t e

⊺
t ) +w

w
t v

⊺
t of Graves et al. [2016].

To track the temporal distance of memory allocations, a temporal link matrix
Lt ∈ [0, 1]N×N is maintained. It is a continuous adjacency matrix. A helper
quantity called precedence weighting is defined: p0 = 0 and

pt =

(
1−

∑
i

ww
t [i]

)
pt−1 +w

w
t

L0[i, j] = 0 ∀i, j Lt[i, i] = 0 ∀i

Lt[i, j] = (1−ww
t [i]−ww

t [j])Lt−1[i, j] +w
w
t [i]pt−1[j] (A.9)

Forward and backward address distributions are given by f i
t and bit:

f i
t = S

(
Ltw

r,i
t−1, s

f,i
t

)
bit = S

(
L⊺

tw
r,i
t−1, s

b,i
t

)
S(d, s)i =

(
di+ϵ

max (d+ϵ)

)s
∑

j

(
dj+ϵ

max (d+ϵ)

)s
(A.10)

Compare this to the f i
t = Ltw

r,i
t−1 and bit = L

⊺
tw

r,i
t−1 of Graves et al. [2016].

The read address distribution is given by:

cr,it = C
(
Mt,k

r,i
t , βr,i

t ,mr,i
t

)
(A.11)

wr,i
t = πi

t[1]b
i
t + π

i
t[2]c

r,i
t + πi

t[3]f
i
t (A.12)

Finally, memory is read, and the output is calculated:

yt = vt +Wr

[
r1t ; ...; r

R
t

]
rit =M

⊺
t w

r,i
t



114 A.2 Hyperparameters for the Experiments

A.2 Hyperparameters for the Experiments

Copy Task. We use an LSTM controller with hidden size 32, memory of 16
words of length 16, 1 read head. W is 8, with the 9th bit indicating the start of
the repeat phase. L is randomly chosen from range [1, 8], N from range [2, 14].
Batch size is 16.

Associative Recall Task. We use a single layer LSTM controller (size 128),
memory of 64 cells of length 32, 1 read head. Wb = 3, B ∈ [2, 16], Wb = 8,
batch size of 16.

Key-Value Retrieval Task. We use a single layer LSTM controller of size 32, 16
memory cells of length 32, 1 read head. W = 8, L ∈ [2, 16].

bAbI. Our network has a single layer LSTM controller (hidden size of S = 256),
4 read heads, word length of 64, and 256 memory cells. Embedding size is
E = 256, batch size is 2.



Appendix B

Additional Details for Inspecting the
Implicit Modularity of Neural
Networks

B.1 Derivations

B.1.1 From Gumbel-Softmax to Gumbel-Sigmoid

In what follows, we use the notation by Jang et al. [2017]: k is the number of
categories, class probabilities are πi, i ∈ {1..k}, y ∈ Rk is a sample vector from
the Gumbel-Softmax distribution (also called Concrete distribution by Maddi-
son et al. [2017]). Individual components of y are denoted by yi. We will refer
to li = logπi as logits. We show how to sample from the Gumbel-Sigmoid dis-
tribution, the special case of k = 2, l2 = 0 of the Gumbel-Softmax distribution.

First, we show that the sigmoid is equivalent to a first element y1 ∈ R of the
output vector of the two element softmax with l1 = x, x ∈ R and l2 = 0:

σ(x) =
1

1 + e−x
=

ex

ex + 1
=

ex

ex + e0
=

el1

el1 + el2
= y1. (B.1)

According to Jang et al. [2017], the sample vector y ∈ Rk from the Gumbel-
Softmax distribution can be drawn as follows:

yi =
e

1
τ
(li+gi)∑k

j=1 e
1
τ
(lj+gj)

, (B.2)

where gi ∼ Gumbel(0, 1) are independent samples from the Gumbel distribu-
tion. We are interested in the special case of a sigmoid, which we showed to

115



116 B.1 Derivations

be equivalent to the y1 in k = 2, l2 = 0 case:

y1 =
e

1
τ
(l1+g1)

e
1
τ
(l1+g1) + e

1
τ
g2
. (B.3)

This can be rearranged as:

y1 =
1

1 + e−
1
τ
(l1+g1−g2)

= σ

(
1

τ
(l1 + g1 − g2)

)
. (B.4)

Writing out the inverse transformation sampling formula for gi ∼ Gumbel(0, 1);
gi = − log(− logUi), were Ui ∼ U(0, 1) are independent samples from the
uniform distribution, we get:

y1 = σ

(
1

τ
(l1 − log(− logU1) + log(− logU2))

)
= σ

(
1

τ

(
l1 − log logU1

logU2

))
.

(B.5)

Finally, by renaming s = y1 and l = l1 (we have just a single logit), we obtain
the sampling formula for Gumbel-Sigmoid:

s = σ

(
1

τ

(
l − log logU1

logU2

))
. (B.6)

B.1.2 Straight-Through Estimator

Samples from the Gumbel-Softmax distribution can directly be converted to a
sample from the categorical distribution as:

ci = 1i=arg maxj yj (B.7)

Applying the straight-through estimator [Hinton, 2012; Bengio et al., 2013b] can
provide ‘hard’ samples while permitting gradient flow ([·]stop is an operator for
blocking backward gradient flow):

ci = [1i=arg maxj yj
− yi]stop + yi (B.8)

Since in the Gumbel-Sigmoid we have k = 2 categories and
∑

i yi = 1, the
arg max can be replaced by testing whether yi > 0.5:

ci = [1yi>0.5 − yi]stop + yi (B.9)

Since we defined the sample s to be y1 (i.e. we are interested in the i = 1

case) the index i can be omitted. The variable has a Bernoulli distribution (see
Sec. B.1.3), so we use a substitution b = c1 to get:

b = [1s>0.5 − s]stop + s (B.10)



117 B.1 Derivations

B.1.3 The Expected Value of the Samples

Let us analyze the distribution governing the samples b. Each sample is binary
and independent since it is generated using independent samples from a uniform
distribution. Since the sampling process is stationary they must therefore be
Bernoulli distributed. Next, we show that their mean is µ = σ(l).

We are interested in:

µ = P (b = 1) = P ([1s>0.5 − s]stop + s = 1) . (B.11)

The straight-through estimator does not change the numerical value of b, so we
can ignore it:

µ = P (b = 1) = P (1s>0.5 = 1) = P (s > 0.5) , (B.12)

where s = σ
(

1
τ

(
l − log logU1

logU2

))
. Let us simplify the condition s > 0.5:

σ

(
1

τ

(
l − log logU1

logU2

))
> 0.5 (B.13)

σ is monotonically increasing and σ(0) = 0.5, so:

1

τ

(
l − log logU1

logU2

)
> 0. (B.14)

By multiplying both sides with τ > 0 and re-ordering we obtain:

l > log logU1

logU2

. (B.15)

Since ex is monotonically increasing, we can exponentiate both sides to obtain:

el >
logU1

logU2

. (B.16)

The samples Ui are uniform random samples from the range Ui ∈ (0, 1). Hence,
it follows that logUi < 0. Multiplying both sides by logU2, we get:

el logU2 < logU1. (B.17)

Exponentiating once again leads to:

U el

2 < U1. (B.18)



118 B.1 Derivations

Let us return to the original problem, which is now takes a much simpler form:

µ = P (b = 1) = P (U el

2 < U1). (B.19)

Using the definition of the mean, we get:

µ = EU1∼U(0,1),U2∼U(0,1)

[
1
Uel
2 <U1

]
. (B.20)

Using the definition of expectation:

µ =

∫ ∞

−∞
P (U2)

∫ ∞

−∞
P (U1)1Uel

2 <U1
dU1dU2. (B.21)

Since Ui ∼ U(0, 1) are samples form uniform distribution with range (0, 1),
P (Ui) = 1 in interval Ui ∈ (0, 1) and 0 otherwise. This enables us to change the
boundaries of the integrals:

µ =

∫ 1

0

∫ 1

0

1
Uel
2 <U1

dU1dU2. (B.22)

Since the value of 1
Uel
2 <U1

is 1 when U1 > U el

2 and 0 otherwise, we can tighten
the bounds of integration and eliminate the indicator function:

µ =

∫ 1

0

∫ 1

Uel
2

1dU1dU2 =

∫ 1

0

[U1]
1

Uel
2
dU2. (B.23)

µ =

∫ 1

0

1− U el

2 dU2 = 1−
∫ 1

0

U el

2 dU2

= 1−

[
U el+1
2

el + 1

]1
0

= 1− 1e
l+1

el + 1
+

0e
l+1

el + 1

= 1− 1

el + 1
=

el + 1

el + 1
− 1

el + 1
=

el

el + 1
=

1

e−l + 1

= σ(l).

(B.24)

B.1.4 Choosing the Temperature

Notice that µ = σ(l) does not depend on the temperature τ (Appendix B.1.3).
The binarized sample, b, will have the same output regardless of the value of τ ,
thus s will have the same gradients. The logit l, however, has a gradient scaled
by 1

τ
, but which can be mitigated by the normalization in the Adam optimizer.

Thus, we can choose τ freely. We set τ = 1 for all experiments of our paper.



119 B.2 Additional Discussion

B.2 Additional Discussion

B.2.1 Stability of the Masks

Multiple sources of randomness could affect the final masks discovered by our
method. These include sampling the mask at each iteration, different data for
each target task, and the order in which data is used for training. To verify
that the masks discovered by our method are consistent we considered pairs
of CIFAR10 classes as target tasks in combination with a simple CNN without
dropout (Appendix B.3.8). Pairs are chosen instead of the leave-one-out
scheme used in Sec. 3.4 to increase the sparsity of the masks as much as
possible (potentially making them even more unstable). We trained 10 CNNs
and analyzed 10 random pairs of classes for each of them. For each pair we
trained two separate masks and calculate the Intersection over Union (IoU),
resulting in a total of 100 data points.

We found that the mean IoU is 93.26±0.96%, which confirms the discovered
masks’ stability. Note that in case multiple redundant weight configurations are
present in the network, different mask seeds will find a different subset of them,
so their IoU will be less then 100% even in the optimally stable case. Using
dropout would encourage such cases.

Potential Errors Introduced by the Straight-Through Estimator

The straight-through estimator introduces approximations in the gradient calcula-
tion. Fortunately, the inaccuracies do not build up through multiple estimation
steps, since the masking and straight-through estimator are applied directly to
the network’s parameters. Indeed, on each gradient path, there is at most a
single straight-through estimator present.

B.2.2 Does Masking Change the Performed Operation?

The recent work of [Zhou et al., 2019] demonstrated how it is possible to achieve
non-trivial performance by training binary masks on a neural network with
frozen weights that were randomly chosen. This raises the question whether
the masking process in our method changes the performed operation after the
weights are frozen, and thus could cause misleading observations.

To investigate this possibility, we randomly selected some of the networks
and datasets used throughout the paper and trained as usual. After both the
weights and the masks are learned, we performed the following experiment:



120 B.2 Additional Discussion

we applied masks to roughly half of the networks weights, while leaving the
remainder unmasked. In one variant of this experiment, early layers near to the
input are masked, while the later layers, including the output, are not. In the
other variant, the opposite is true. If the network demonstrates compatibility
between the masked and non-masked layers for these experiments, then this is
a strong indication that it has not altered the performed operation significantly.

The outcome of these experiments are shown on Fig. B.1, where we report
the performance drop for transformer on SCAN dataset, FNN on addition/multi-
plication dataset, LSTM, big (4 layers of 2000 units) and small (4 layers of 800
units) FNNs on the double-addition experiments and the small CNN on CIFAR
10.

For almost all configurations, we observe only a low drop in performance,
indicating that the operations performed by the network remain mostly the same
under the masking process. The only exception we found is the big FNN on the
double-addition task, when the early layers are masked. Note, however, that its
performance is well above the chance level (P = 10−4). Since this network is
severely overparametrized, we speculate how this might be the reason for this
observed difference. For example, it could have learned to solve the problem
by combining multiple alternative pathways, all of which contribute to the out-
put. If the masking process removes some of those pathways from the layer near
the input, but leaves them in the layers near the output, the pathways are cut
in half. Thus, they might produce erroneous outputs. To further analyze this
we therefore also trained a smaller version of the same network, which we ob-
serve behaves similarly to all other networks, suggesting that also in this case
the masking does not alter the performed computation significantly.

Finally, we note the variant where the early layers are masked appears con-
siderably more difficult than other way around. This might be because some of
the inputs of the unmasked later layers are removed by masking the early layers.
Normally, if all layers are masked as well, such weights of later layers would be
removed together with the ones in the early layers, thus not affecting the result.

SCAN trafo
+/∗ FNN

+/+ LSTM
+/+ FNN Big

+/+ FNN Small
CIFAR 10 simple

0

50

100

A
cc

ur
ac

y
dr

op
[%

]

Early masked
Late masked

Figure B.1: Accuracy drop for masks applied to half of the weights. See
Sec. B.2.2 for details.

There may be multiple reasons for these different findings compared to Zhou



121 B.2 Additional Discussion

et al. [2019]. First, we use well-trained networks instead a randomly initialized
ones. Untrained networks are believed to contain many random subnetworks
which can useful for performing any task. However, the fully trained network
has its subnetworks tuned to the task, likely decreasing the possibility of fur-
ther subnetworks existing that implement radically different operations. Second,
we are training the masks on a subset of the train set, which does not encour-
age changing the performed operations either: the highest performance can be
achieved by selecting the correct subnetwork already performing the operation
well. Finally, the experiments of Zhou et al. [2019] indicated that the perfor-
mance of the best found network decreases with the task complexity, and per-
forms best on MNIST. Some of the experiments considered here are significantly
more complex.

B.2.3 Choosing Target Functionality

In principle, any operation that the network is able to perform can be used as a
target functionality. This includes partitions of the dataset, or even novel tasks,
if the network can generalize to them. The resulting masks will highlight which
weights are responsible for performing them. For our experiments, we always
chose a subset of the training set of the weights as target functionality. This en-
sures that no generalization is required to solve the problem and that the subset
of the original weights required to solve this subproblem is highlighted. The
discovered module then corresponds to functionality that the network should
already have learned in the original training phase.

Interesting target functionality should be chosen such that removing the dis-
covered set of weights or its inverse can be expected to lead to measurable
performance difference on some test set. This test set should ideally be a subset
of the original training set used for the weights. In this way, one does not have
to directly consider the amount of sharing, and can measure (the difference in)
accuracy, which we find more reliable and easy to interpret (see also Sec. 3.1
for further details) However, if such a choice is not available and the amount of
sharing has to be analyzed directly, then we recommend drawing conclusions
only when the observed difference compared to some reference score is suffi-
ciently high. For example, in the Permuted MNIST experiments, the sharing of
< 20% is significantly lower than the expected 100%.



122 B.2 Additional Discussion

B.2.4 Is Attention the Solution?

Could a form of attention [Schmidhuber, 1991, 1992c, 1993; Bahdanau et al.,
2015] solve the problem discussed in Sec. 3.2.4? At least the current use of
attention does not seem promising. In theory, attention-based Transformers
[Vaswani et al., 2017] can reuse the same modules in parallel, but only if they
are executed in the same layer. For a ∗ b+ c ∗ d the multiplier is reusable, but for
a∗b∗c it is not, since the second multiplication requires the result of the first; that
is, different layers are needed. In recurrent models, such as RNNs with attention
[Bahdanau et al., 2015] and Universal Transformers [Dehghani et al., 2019],
attention does not permit routing between functional modules but is just used to
route data to the input of a monolithic transformation block which processes the
information. Emerging functional modules must in that case appear within the
processing blocks. However, since attention is neither able to rewire the block’s
internal data flow, nor to permute elements of the attended vector, it does not
help with the routing between modules emerging inside the block. Indeed, we
showed empirically in Sec. 3.3 that Transformers suffer from the same general-
ization issues as LSTM on the SCAN dataset, and they did not generalize on the
more complex Mathematics Dataset either. Attention might help though, if all
the input and output interfaces of functional blocks overlap, and a single pro-
cessing step executes a single function. However, as our experiments show, the
separation between modules tends to be inadequate in the case of shared inter-
faces (Sec 3.2.1). Moreover, there is no control over executing a single function
per time step (e.g., the whole a ∗ b ∗ c block could be executed in a single step).

In order to help with data routing between emerging functional modules,
attention must be able to focus on arbitrary parts of the activation vectors. This
would enable information exchange between such modules, but it is unclear
how this could be implemented. For example, in the double addition experi-
ment (Sec. 3.2.2), the task requires to process disjoint subsets of the input, which
is not possible with the attention mechanism. In general, attention-based solu-
tions would require to store one “concept” in a single vector so that they can
separately attended to. However, what makes a good “concept” in this case
is unclear, especially since different processing stages might require a different
granularity – for example, sorting tuples of numbers based on the first element
of the tuple requires accessing individual elements of it but also treating the tu-
ple as a whole. For a broader discussion on dynamic information routing and
the problem of variable binding in neural networks, we refer the reader to Greff
et al. [2020].

Despite these limitations, the models with attention still start from a better



123 B.2 Additional Discussion

position than the ones without. If the computation block of the transformer
can learn to conditionally read/write from the same memories in the column,
and to copy data between different memories, in theory, it is possible to learn a
behavior that generalizes. This does not happen in practice by default. Whether
it can be enforced is an interesting research question. As we saw in Chapters 4
and 5, it is possible to some extent.

B.2.5 Explicitly Modular Networks

At first glance, explicitly modular networks [Clune et al., 2014; Andreas et al.,
2016; Kirsch et al., 2018; Chang et al., 2019; Bahdanau et al., 2019b] could
provide a solution for the discovered problems. In what follows, we will call
hardcoded modules “blocks” to distinguish them from functional modules,
which we call “modules”. Routing networks, in addition to the problems
described by Rosenbaum et al. [2019], are restricted to exchange information
between blocks as a single fixed-size activation vector. Because all the
information has to be stored in this vector (such as different variables), either
different parts of the vector should be responsible for different stored variables
or they have to be stored in superposition, e.g., by projecting them in a space
where they are orthogonal to each other. Either way, this requires the blocks
not only to perform a given operation, but also to be aware which variable they
want to access. Thus, the blocks are not universal, since operating on different
variables encoded in the state require different modules. For example, in the
double addition experiment (Sec. 3.2.2), the task requires to process disjoint
subsets of the input. This is true in general: Different subsets of the network
state may require independent processing. Routing networks consist of simple
modules stacked sequentially, which is obviously not a good fit for this type of
data. Alternatively, RIMs [Mittal et al., 2020; Goyal et al., 2021b,a] attend to
the data, making it possible to execute multiple modules in parallel. However,
they are based on attention, which also has its limitations (Sec. B.2.4). These
difficulties let us believe that a general inductive bias towards function-based
specialization in generic neural networks would be a preferable solution
compared to explicit modality and motivates this paper’s topic.



124 B.3 Additional Results and Experimental Details

B.3 Additional Results and Experimental Details

B.3.1 Sanity Checking the Mask Discovery Process

Our method frequently discovers a resistance against weight sharing. Perhaps
this could raise the question whether our method is able to discover shared
weights at all. We ran additional experiments to verify this.

We used the double-addition experiments from Sec. 3.2.2. Specifically, we
trained the network as before, but after the weight training phase, we copy the
input and output weights of one pair to the part of the weight matrix correspond-
ing to the other. This ensures that the hidden layers cannot see any difference
between the two pairs. We use the FNN variant since it can be used without any
modification, while the LSTM would require changes to avoid state conflicts.

In Fig. B.2 it can be seen how our method accurately discovers that sharing
is almost perfect in this case, which further justifies our approach. Compare this
to the identical setup of Fig. 3.3. Note that the first and last layers are still not
shared: they contain identical, but non-shared copies of the weights.

layer 1 layer 2 layer 3 layer 4 output
0.0

0.5

1.0

P
ro

po
rt

io
n IoU

IoMin

Figure B.2: Double addition task with manually edited input/output weight ma-
trices to reuse the hidden layers. Proportion of weights shared per operation in
case of FFN.

B.3.2 Common Hyperparameter Choices

Our method is implemented in PyTorch [Paszke et al., 2019], and available at
https://github.com/robertcsordas/modules. Unless otherwise noted we
use the Adam optimizer [Kingma and Ba, 2015], a batch size of 128, a learning
rate of 10−3, and gradient clipping of 1. To improve the quality of the masks we
divide a batch into four parts that each act on a different mask sample. For non-
LSTM networks, we use the ReLU activation function [Fukushima, 1969; von der
Malsburg, 1973; Nair and Hinton, 2010] for the activations of intermediate lay-
ers. The Gumbel-sigmoid always has a temperature of τ = 1 (the reason for this

https://github.com/robertcsordas/modules


125 B.3 Additional Results and Experimental Details

0.0 0.2 0.4 0.6 0.8 1.0
mask value

0

500

1000

de
ns

ity

+/∗ FNN
+/∗ LSTM
+/+ FNN
+/+ LSTM

(a) Linear scale, small values cut off

0.0 0.2 0.4 0.6 0.8 1.0
mask value

0

5

10

15

lo
g

de
ns

ity

+/∗ FNN
+/∗ LSTM
+/+ FNN
+/+ LSTM

(b) Log scale, all values

Figure B.3: Histogram (normalized as a 500-bin PDF) of expected values of
the mask elements (µi = σ(li)) on different tasks. (a) Shown on a linear scale.
Values < 0.0002 (bottom 10% of the first bin) are removed from the calculation
because their number vastly exceeds the number of kept weights for most of the
networks, making the details invisible. (b) All mask means, µi, (without small
values removed) shown on log-scale.

is explained in Appendix B.1.4). For most of our experiments, the regularization
coefficient α is specified as β = bα, where b is the batch size used for training
the masks. Otherwise, we will mention α separately. All figures in this paper,
unless noted otherwise, show mean and standard deviation calculated over 10
runs with different seeds.

B.3.3 Choosing the Regularization Hyperparameter

Choosing the regularization hyperparameter α is critical to obtain valid conclu-
sions. Too low α might yield the false impression that no modules exist or that
they share more weights than they really do. Too strong regularization may de-
grade performance on the target task, discarding essential weights.

Fortunately, there is a simple and consistent heuristic for choosing α, which
follows from training a mask on the full task. We increase α as long as the perfor-
mance does not start to drop. Then, we reduce α slightly until the performance
is adequate, e.g. > 95% of the original performance. This method is not very
sensitive to the exact value α and transfers well across different network sizes
(Fig. B.4). We find that it is less critical but still important to tune the learning
rate and the number of steps of the mask training process. We always check
the chosen hyperparameters’ validity by training a mask on the full, unmodified
problem, where we expect to see only a slight drop in performance.

Note that underfitting NNs tend to share more weights. Indeed, in our ex-
periments we found that choosing a sufficiently large network size is essential to



126 B.3 Additional Results and Experimental Details

10−5 10−4 10−3

β = bα

70

80

90

100

A
cc

ur
ac

y
[%

]

30

40

50

(a) Big network

10−5 10−4 10−3

β = bα

70

80

90

100

A
cc

ur
ac

y
[%

]

30

40

50

(b) Medium network

Figure B.4: Sensitivity analysis for hyperparameter β = bα (b is the batch size)
on addition/multiplication experiments. Note the logarithmic x-axis. The color
indicates the total amount of sharing [%]. The red line and the star indicate
the value chosen for our experiments. Each point is a mean of 10 independent
seeds. The network is not very sensitive to the exact choice of β. (a) Big network,
with 5 layers of size 2000. (b) Medium network, with 5 layers of size 800. It
can be seen that the hyperparameter transfers well between network sizes.

avoid false conclusions about the reason for sharing. Fig. B.5 shows an example
of how the amount of weight sharing changes as a function of network capacity.

B.3.4 Addition/Multiplication Experiments

Since preliminary experiments indicated that modulo 100 multiplication require
lots of weights, we used reasonably large networks for this experiment. The FNN
is 5 layers deep, each layer having 2000 units and the LSTM a hidden state size
of 256 (further increase resulted in overfitting). A network was trained for 20k
steps on the full task before freezing. The following mask training phase takes
an additional 20k steps for each mask. Mask training uses a learning rate of 10−2

and β = 10−4 for regularization. For the LSTM we use 3 time steps where the
input is repeated for every step. The dataset is generated by sampling numbers
and operations uniformly at random.

Fig. B.5 demonstrates that even if we use a large network (the small, 3 layer
networks of 400, 400, 200 can solve the task), the percentage of shared weights
still changes when increasing the network size.

In Sec. 3.2.1 we showed that even though there is a certain level of natu-
ral separation between the modules responsible for addition and multiplication,
there is still a significant proportion of shared weights. To analyze the impor-
tance of those shared weights, we tested the network with inverted masks as in
Sec. 3.2.2. Tab. B.1 shows the results. Given the high proportion of sharing,



127 B.3 Additional Results and Experimental Details

especially in the input and output layers, the results are as expected: inverted
masks do not perform well, showing that the separation of the modules is lim-
ited.

small medium big huge
0

20

40

60

To
ta

ls
ha

re
d

[%
]

Figure B.5: Addition/multiplication task: the total proportion of shared weights
for the “add” operation for different network sizes. “small” means a 4 layer
network with hidden sizes of 400, 400, 200, “medium” 5 layers / hidden sizes
of 800, “big” 5 layers / 2000, “huge” 5 layers / 4000.

Full + ¬+ ∗ ¬∗

FNN
+ 100± 0.0 100± 0.0 13± 5.5 1± 0.0 20± 7.0

∗ 100± 0.2 0± 0.0 69± 9.7 100± 0.0 17± 5.8

LSTM
+ 100± 0.0 100± 0.0 2± 0.6 2± 0.6 1± 0.2

∗ 100± 0.1 3± 1.2 6± 0.8 100± 0.0 2± 1.2

Table B.1: Accuracy of addition/multiplication task on addition and multiplica-
tion with FNN and LSTM. The header shows on what the applied mask was
trained on. ¬ denotes an inverted mask

B.3.5 Double Addition Experiments

The training protocol for double-addition experiments is identical to the one in
Appendix B.3.4, except that the FNN variant uses a mask regularizer of β =

4 ∗ 10−4. The LSTM uses 6 steps in total in this case (3 steps per operation). In
the full input case, both tuples are presented for all 6 steps and the output is
read from the last step. In the case where one tuple is presented at a time, the
first tuple is shown for the first 3 steps, resulting in an output at the 3rd step, the
second tuple is presented for the next 3 steps, resulting in an output at the 6th

step.



128 B.3 Additional Results and Experimental Details

layer 1 layer 2 layer 3 layer 4 output
0

1

2

N
o.

of
w

ei
gh

ts

×104

+ ∗

(a) FNN

lstm 0 ih lstm 0 hh lstm 1 ih lstm 1 hh output
0

1

2

N
o.

of
w

ei
gh

ts

×104

+ ∗

(b) LSTM

Figure B.6: Addition/multiplication taks: number of weights per operation for
each layer in (a) feedforward network, (b) LSTM.

Additional Inverted Mask Experiments

Following the inverted-mask experiments done in Sec. 3.2.2, we investigated
how well the separation holds if we consider only the hidden layers. This is
achieved by using inverted masks for the hidden layers, while using the mask
trained on the full task without inversion for the input and output layers. Hence,
in this case the inputs and outputs contain all the connections needed for both
tasks. Our findings are shown in Tab. B.2 and are consistent with Tab. 3.1. It
can be seen how the performance of the inverted mask tends to work well on
the opposite task, while its performance is significantly lower on the original
task (note that chance is at P = 0.01 for these experiments), suggesting that this
effect is not due to their inputs/outputs being disjoint.

Furthermore, we experimented with leaving the input and output layers un-
masked, while inverting the discovered masks for the hidden layers. Surpris-
ingly, in this case the inverted masks perform well on both tasks (around 90%),
even on the task for which the mask was inverted. This suggests that the net-
work contains an ensemble of subnetworks individually capable of solving the
problem with good performance. However, based on the findings in Tab. B.2,
these subnetworks in the hidden layers appear to be mostly independent of each
other: the performance is non-zero on the original task only if both the original
weights and the ones corresponding to the inverted masks are now included. It
remains unclear what causes this particular behavior in this setting, which we
believe is an interesting direction for future research.



129 B.3 Additional Results and Experimental Details

Fu
ll

Pa
ir

1
¬P

ai
r1

Pa
ir

2
¬P

ai
r2

FN
N

Pa
ir

1
10
0
±
0.
4

10
0
±

0.
0

7
±

4.
0

1
±

0.
1

63
±

15
.9

Pa
ir

2
10
0
±
0.
1

1
±

0.
1

62
±

16
.9

10
0
±

0.
0

8
±

5.
0

LS
TM

Pa
ir

1
10
0
±
0.
0

10
0
±

0.
0

16
±

4.
1

1
±

0.
1

99
±

1.
3

Pa
ir

2
10
0
±
0.
0

1
±

0.
0

97
±

4.
9

10
0
±

0.
0

16
±

5.
9

LS
TM

(fo
rc

ed
)

Pa
ir

1
10
0
±
0.
0

10
0
±

0.
0

25
±

6.
1

1
±

0.
1

76
±

10
.0

Pa
ir

2
10
0
±
0.
1

1
±

0.
1

94
±

4.
2

10
0
±

0.
0

42
±

14
.7

Ta
bl

e
B

.2
:
D
ou

bl
e-

ad
di

tio
n

ta
sk

:
ac

cu
ra

cy
[%

]o
fL

ST
M

s
an

d
FN

N
on

th
e

tw
o

pa
irs

.
In

ca
se

of
LS

TM
(fo

rc
ed

)o
nl

y
on

e
in

pu
ti

s
pr

es
en

te
d

at
a
tim

e
(to

pr
ev

en
ti

nt
er

fe
re

nc
e)

.
Th

e
he

ad
er

sh
ow

s
on

w
hi

ch
pa

ir
th

e
m

as
k

w
as

tra
in

ed
on

.
¬

de
no

te
s
an

in
ve

rt
ed

m
as

k
fo

rt
he

hi
dd

en
la
ye

rs
,w

hi
le

th
e
re

gu
la
rm

as
k
(fo

rt
he

fu
ll

ta
sk

)i
s
ap

pl
ie

d
to

th
e
in

pu
ta

nd
ou

tp
ut

la
ye

rs
.
Fo

rf
ur

th
er

de
ta
ils

,p
le
as

e
re

fe
rt

o
Se

c.
B.

3.
5



130 B.3 Additional Results and Experimental Details

B.3.6 Transfer Learning Experiments

In the transfer learning setup, we train on 11 permutations of MNIST using the
same network. Training the weights and masks together is more difficult than
the usual setup. In order to improve the quality of the mask gradients we use 8
mask samples per batch instead of the standard 4. Each phase takes 30k steps.
The learning rate is 10−2. The network is 4 layers deep, with hidden sizes of
800, 800, 64. We are using a mask loss of α = 10−5.

Fig. B.7 demonstrates the number of shared weights per layer for a network
that has its masks initialized so that it prefers to reuse the old weights. The
mask logits corresponding to weights of the previous task are initialized to 2
(corresponding to P ≈ 0.88), the logits for newly initialized weights to either
0 (P = 0.5, Fig. B.7a) or -1 (P ≈ 0.27, Fig. B.7b). Compared to Fig. 3.4, the
sharing is significantly increased.

Layer 2 Layer 3 Layer 4
0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

T2
T4

T6
T8

T10

(a) New weights with P = 0.5.
Layer 2 Layer 3 Layer 4

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

po
rt

io
n

T2
T4

T6
T8

T10

(b) New weights with P ≈ 0.27.

Figure B.7: Proportion of weights shared per layer after every second task on
permuted MNIST, for a network with masks initialized to prefer reusing the old
weights. Old weights are sampled with P ≈ 0.88 probability. Each task cor-
responds to a permutation. Decreasing the probability of new weights forces
increased sharing.

B.3.7 Experiments on Algorithmic Tasks

SCAN Experiments

In preliminary experiments, we observed that the full-size word embeddings
used for the baseline by Lake and Baroni [2018] yielded many possible redun-
dant input-to-hidden weight configurations that have a greatly reduced proba-
bility of being sampled. This caused the input-to-hidden layer to be removed



131 B.3 Additional Results and Experimental Details

by the thresholding procedure. Therefore, we appropriately reduced the size of
word embeddings to 16 (note that SCAN has only 13 input and 6 output tokens
and they are not shared). When using the reduced embedding, we do not suffer
from the aforementioned problems. Teacher forcing was used for each batch
with 50% probability.

The Transformer network is based on PyTorch’s internal implementation,
with modifications needed to apply multiple masks more effectively. We use
dmodel = 100, inner-layer dimensionality of dff = 200, h = 4 heads, and 3 layers
both in the encoder and decoder. The network is always trained with teacher
forcing. An end token is applied to the end of each input sequence, and decod-
ing starts with a start token. The sinusoidal positional embedding [Vaswani et al.,
2017] is applied to the inputs of the transformer in both encoder and decoder.

The training procedure uses a batch size of 256 and a gradient clipping of 5.
The mask learning rate is 10−2 and we use β = 3∗10−5 for the LSTM experiments
and β = 10−3 for the transformers. We train the networks for 25k steps without
masks before freezing and for another 25k steps for each mask training phase.

We train the network weights on the IID dataset (the “simple” split), and
only the masks on the rest of the data splits. Fig. B.8 shows that this process
marginally improves the performance of all splits, compared to when the net-
work is directly trained on the corresponding train split. However, performance
degrades significantly when removing weights that are unnecessary for the given
training split. This allows us to conclude that the learned solution requires tasks-
specific weights. Notice that the remaining weights still perform significantly
better than training the network solely on the training set of the given split with-
out masking.

The word embeddings are excluded from the masking process and remain
unmodified after initial training to keep the learned word representations un-
changed.

Experiments on the Mathematics Dataset

The Mathematics Dataset [Saxton et al., 2019] is a dataset intended to test the
mathematical reasoning skills of NNs. It consists of 56 tasks from different areas
of mathematics, on high school-level. Each task consists of a train set divided into
3 levels of difficulty (easy, medium, and hard) and an IID test set. All questions
and answers are provided only in a human-readable text format (see examples
in Fig. B.9).

We train the network on individual tasks, in contrast to the method of Saxton
et al. [2019], where all tasks are trained together. The main reason for this is to



132 B.3 Additional Results and Experimental Details

Turn Left Jump Length
0

50

100
Te

st
ac

cu
ra

cy
[%

]

(a) LSTM

Turn Left Jump Length

0

50

100

Te
st

ac
cu

ra
cy

[%
]

(b) Transformer

Figure B.8: The networks’ performance when it is directly trained and tested
on the splits indicated on the x-axis, without masking. This is the standard
setup from Lake and Baroni [2018]. Performance when the network is trained
on IID split, then masks are trained on train split indicated on the x-axis. It
can be seen that although training on the IID set helps compared to the basic
setup, the network still needs task-specific weights, which hurt performance
when removed by the masks.

save computation and to prevent possible interference between the tasks. We
chose five different tasks to analyze, based on their difficulty: the chosen tasks
should have good performance without masking but should be nontrivial. Thus,
we choose “arithmetic: add_or_sub”, “algebra: linear_1d”, “calculus: differenti-
ate”, “comparison: sort” and “polynomials: collect”. Note that the performance
of our network may be lower than that reported by Saxton et al. [2019], since no
transfer between tasks is possible, and we train for significantly fewer iterations
due to limited computational resources.

We split the official easy, medium, and hard train sets to obtain new train
and validation sets for each difficulty level. We randomly choose 10k samples
for the new validation set; the rest is used as the new train set. We filter for
repetitions, making sure that no sample appears twice. This way, we get a train
and validation set for each difficulty level. We ignore the official test sets be-
cause of the missing distinction in difficulty. This treatment is needed because
we want to be able to train the network on all difficulty levels but also the masks
only on the easy split. Additionally, we want to evaluate its performance on the
hard difficulty. In this way, we are able to determine whether specific weights
are needed exclusively for performing the hard split. Note that the same rules
govern the samples in all sets.

First, we train the network on all difficulty levels (easy, medium, and hard).
Then we freeze its weights. Next, we train masks on the easy split and test on



133 B.3 Additional Results and Experimental Details

the hard split. If this results in a performance drop, then this indicates that the
network requires a separate set of weights for different difficulty levels, which is
undesirable. Nonetheless, we observe precisely this behavior (Fig. 3.6), which
confirms once more that NNs tend to violate Preuse.

Interpreting the size of the drop is nontrivial due to how the easy, medium,
and hard splits differ. The more difficult splits may include some samples from
the easier splits, but never the other way around. This means that the hard
test set’s performance will be nonzero even if none of the hard samples are
solved correctly. This behavior is inherent to the original dataset and can not be
changed without regenerating it.

We use the Transformer [Vaswani et al., 2017] model from Saxton et al.
[2019]. It has a dmodel = 256, inner-layer dimensionality of dff = 512, h = 4

heads. Both the encoder and decoder have 3 layers. The word embeddings of
the encoder and decoder are shared, and the output layer is tied to the word
embedding. The network is always trained with teacher forcing. We use the
Adam optimizer with a learning rate of 10−4, ϵ = 10−9, β1 = 0.9, β2 = 0.995 and
a gradient clipping of 1. We use 8 masks samples for each batch. We found that
some tasks require a linear learning rate warmup for 5k iterations at the begin-
ning of network training in order to converge. No warmup is used for training
the masks. Individual tasks use different hyperparameters, listed in Tab. B.3.
Batch sizes are chosen so that the experiments fit on a single GPU with 16Gb
of VRAM (2 GPUs for “Poly. collect”).

B.3.8 CNN Experiments on CIFAR10

Simple CNN

We use a learning rate of 10−3 and β = 10−4. We train the network for 20k steps
before freezing its weights and then use an additional 20k steps for training each
of the masks, including the reference mask. See Tab. B.4 for details regarding
the architecture.

Fig. B.11 shows the difference in the confusion matrix for all classes of CIFAR
10. The most surprising observation is that the decrease in performance for
each of the classes is substantial, ranging from 40 to 60%. This shows the heavy
reliance on class-exclusive features.

Analyzing confusion matrix differences yields interesting insights. “Airplane”
is confused with“bird” and “ship”, which is likely due to having a similar blue
background. Classes “cat” and “dog” tend to be confused with each other—
removing exclusive feature detectors for one improves the performance of the



134 B.3 Additional Results and Experimental Details

What is the difference between 1801791.2422 and −0.7?
1801791.9422

Solve −719*o + 3179*o + 135275 = −628*o − 777*o for o.
−35

What is the derivative of 30595*j**4 + 254*j**3 + 1559873 wrt j?
122380*j**3 + 762*j**2

Sort −3/5, −1355.6, 703, 2, −2/3 in ascending order.
−1355.6, −2/3, −3/5, 2, 703

Collect the terms in −26*v − 67 + 29*v + 12*v − 3 − 155.
15*v − 225

Figure B.9: Examples from Mathematics Dataset. One sample for every task we
use.

other. “Truck” and “car” are highly related, likely due to the similarities in terms
of shape, such as having tires, and similar backgrounds, such as the road.

Simple CNN Without Dropout

The CNN architecture used for experiments in Sec. 3.4 uses dropout, as shown
in Tab. B.4. A natural question to ask is how this affects the modularity of the
resulting network. Fig. B.10 indicates that, as expected, removing dropout re-
sults in a few percent of performance loss. When comparing Figures B.11 and
B.12 it can be seen that adding dropout causes a higher degradation in the class
performance when the class-exclusive feature detectors are removed (roughly
30%-40% higher drop per class). This indicates that network with dropout de-
pends more on class-specific modules, which is in line with findings presented
by Filan et al. [2020].



135 B.3 Additional Results and Experimental Details

ResNet-110

To demonstrate that these behaviors apply to more complex models,
we train a ResNet-110 [He et al., 2016] model1 which achieves com-
petitive 93% validation accuracy following https://github.com/bearpaw/
pytorch-classification. The network is built from non-bottleneck blocks
(“BasicBlocks”, Fig. 5, left by Vaswani et al. [2017]). It is trained with SGD us-
ing a weight decay of 10−4, batch size of 128 and a starting learning rate of 0.1.
The learning rate is divided by 10 at iterations 32 000 and 48 000 (correspond-
ing roughly to epoch 81 and 122). The network is trained for 64 000 iterations
(164 epochs). Data augmentation of random horizontal flipping and random
crop (with padding 4 and output size of 32x32) is used. Masks are trained with
Adam, batch size of 256, learning rate of 0.03, β = 2 ∗ 10−5, for 30 000 itera-
tions each. Gradient clipping is not applied during the initial stage of training
the weights, but the usual clipping to norm of 1.0 is applied when training the
masks.

As Figures 3.7 and B.13 show, the performance drop per class is even more
dramatic than in the simple CNN case, reaching almost 100%.

Inspecting the confusion matrix differences of different architectures as seen
in Figures B.11, B.12 and B.13 highlight their similarity. This suggests that the
interdependence between classes previously observed is mostly data driven an
independent of the actual network architecture.

1We would like to note that ResNets are special case of Highway Networks [Srivastava et al.,
2015b] with the gates fixed open.

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification


136 B.3 Additional Results and Experimental Details

H
yperparam

eter
A
dd

orsub
Linear1D

D
ifferentiate

Sort
Poly.

C
ollect

Batch
size

(net)
256

512
128

256
128

Batch
size

(m
ask)

256
400

128
256

256
M

ask
regularizer(β)

2
∗
10

−
5

10
−
6

10
−
5

3
∗
10

−
6

10
−
6

Training
iters

(net)
30k

200k
40k

30k
200k

Training
iters

(m
asks)

30k
50k

40k
30k

50k
Learning

rate
(m

asks)
0.03

0.02
0.03

0.03
0.02

W
arm

up
steps

-
5k

-
-

5k

Table
B

.3:
H
yperparam

eters
fordifferenttasks

on
the

M
athem

atics
D
ataset



137 B.3 Additional Results and Experimental Details

In
de

x
O

pe
ra

tio
n

In
pu

ts
O

ut
pu

ts
Ke

rn
el

Pa
dd

in
g

A
ct
iv
at
io

n
D

ro
po

ut

1
C
on

v
3

32
3x

3
1

Re
LU

-
2

M
ax

po
ol

in
g

32
32

2x
2

0
-

-
3

C
on

v
32

64
3x

3
1

Re
LU

-
4

M
ax

po
ol

in
g

64
64

2x
2

0
-

-
5

C
on

v
64

12
8

3x
3

1
Re

LU
0.

25
6

M
ax

po
ol

in
g

12
8

12
8

2x
2

0
-

-
7

C
on

v
12

8
25

6
3x

3
1

Re
LU

0.
5

8
Sp

at
ia
la

ve
ra

ge
25

6
25

6
-

-
-

-
6

Fe
ed

fo
rw

ar
d

25
6

10
-

-
So

ftm
ax

-

Ta
bl

e
B

.4
:
A
rc

hi
te
ct
ur

e
of

th
e
si
m

pl
e
C
N

N
us

ed
fo

rC
IF
A
R

10
ex

pe
rim

en
ts



138 B.3 Additional Results and Experimental Details

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l
85± 2 1± 0 3± 1 1± 0 1± 0 0± 0 1± 0 1± 0 4± 1 2± 0

2± 1 90± 1 0± 0 0± 0 0± 0 0± 0 1± 0 0± 0 2± 1 5± 1

5± 1 0± 0 75± 2 4± 1 4± 1 4± 1 5± 1 2± 1 1± 0 0± 0

3± 0 0± 0 5± 1 66± 4 3± 1 13± 3 5± 1 3± 1 1± 0 1± 0

2± 0 0± 0 5± 1 4± 1 77± 3 2± 1 3± 1 5± 2 1± 0 0± 0

1± 0 0± 0 3± 0 14± 3 3± 1 70± 4 2± 1 5± 1 0± 0 1± 0

1± 0 0± 0 3± 1 4± 1 2± 0 2± 1 86± 3 1± 0 0± 0 0± 0

1± 0 0± 0 2± 0 3± 1 3± 1 3± 1 0± 0 85± 3 0± 0 1± 0

4± 1 1± 0 1± 0 1± 0 0± 0 0± 0 0± 0 0± 0 90± 2 2± 0

2± 0 6± 1 1± 0 1± 0 0± 0 0± 0 0± 0 0± 0 2± 1 88± 2

20

40

60

80

(a) Simple CNN

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

82± 3 2± 1 4± 1 1± 0 1± 1 1± 0 1± 0 1± 0 5± 2 2± 1

2± 0 87± 3 0± 0 1± 0 0± 0 0± 0 1± 0 0± 0 2± 2 6± 2

5± 1 1± 0 68± 5 5± 1 6± 1 5± 1 5± 2 3± 1 1± 1 1± 0

3± 1 1± 0 5± 1 58± 4 5± 1 16± 3 5± 2 4± 2 1± 1 2± 1

2± 0 0± 0 5± 2 5± 1 74± 3 4± 1 3± 1 6± 2 1± 0 1± 0

1± 0 0± 0 4± 1 14± 2 4± 1 68± 3 2± 1 5± 1 1± 0 1± 0

1± 0 1± 0 4± 1 5± 2 3± 1 3± 1 82± 3 1± 0 0± 0 1± 0

1± 1 0± 0 2± 1 3± 1 5± 1 4± 1 0± 0 83± 3 0± 0 1± 1

5± 1 2± 1 1± 0 1± 0 0± 0 0± 0 0± 0 0± 0 88± 3 2± 1

2± 0 7± 2 1± 0 1± 0 0± 0 0± 0 0± 0 1± 0 2± 1 86± 2

20

40

60

80

(b) Simple CNN without dropout

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

92± 2 0± 0 3± 1 1± 0 0± 0 0± 0 0± 0 0± 0 2± 1 2± 1

0± 0 97± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 1

2± 1 0± 0 90± 2 2± 1 1± 0 2± 1 2± 0 1± 0 0± 0 0± 0

1± 0 0± 0 2± 1 83± 3 1± 0 8± 1 2± 0 1± 0 0± 0 1± 0

1± 0 0± 0 2± 1 2± 1 91± 2 2± 1 1± 0 2± 1 0± 0 0± 0

1± 0 0± 0 2± 1 7± 1 1± 0 88± 1 0± 0 1± 0 0± 0 0± 0

0± 0 0± 0 2± 1 2± 1 0± 0 0± 0 94± 1 0± 0 0± 0 0± 0

1± 0 0± 0 1± 0 1± 1 1± 1 2± 1 0± 0 94± 1 0± 0 0± 0

3± 1 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 94± 2 1± 0

1± 0 3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 0 96± 1
0

20

40

60

80

(c) ResNet-110

Figure B.10: Confusion matrix on CIFAR10 with masks trained on all classes.
It can be seen that performance without dropout is a few percent lower, as ex-
pected. ResNet-110 has a significantly better performance in all classes.



139 B.3 Additional Results and Experimental Details

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l
−63± 4 3± 1 24± 3 2± 1 3± 1 1± 0 1± 0 2± 1 19± 3 7± 2

−2± 1 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

−5± 1 0± 0 4± 1 0± 1 0± 1 0± 1 0± 1 0± 0 0± 0 0± 0

−3± 0 0± 0 1± 1 0± 2 1± 0 1± 1 0± 0 0± 1 0± 0 0± 0

−2± 0 0± 0 0± 1 0± 1 2± 1 0± 0 0± 1 0± 1 0± 0 0± 0

−1± 0 0± 0 0± 0 −1± 1 0± 0 1± 1 0± 0 0± 1 0± 0 0± 0

−1± 0 0± 0 0± 1 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

−1± 0 0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0

−4± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 3± 1 0± 0

−2± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 1 −60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 2 −1± 1 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 1± 0

4± 1 −48± 10 0± 0 1± 0 0± 0 0± 0 1± 0 0± 0 6± 1 36± 9

0± 1 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 3 0± 1 0± 2 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 −1± 2 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 2 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0

0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 −6± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 5± 1
−40

−20

0

20

(a) airplane (b) automobile

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

3± 1 0± 0 −3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

14± 3 0± 0 −64± 4 11± 3 12± 2 10± 2 11± 2 4± 1 1± 1 0± 0

0± 1 0± 0 −5± 1 1± 2 0± 0 2± 2 0± 1 0± 1 0± 0 0± 0

1± 1 0± 0 −5± 1 1± 1 2± 1 1± 1 0± 1 1± 1 0± 0 0± 0

0± 0 0± 0 −3± 0 0± 2 0± 0 3± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −3± 1 0± 0 0± 0 1± 0 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 −2± 0 0± 0 0± 1 1± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−50

−40

−30

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

1± 1 0± 0 0± 1 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 1± 2 −4± 1 0± 1 2± 1 1± 0 0± 0 0± 0 0± 0

3± 2 0± 0 4± 1 −64± 4 6± 1 36± 3 10± 2 4± 2 1± 1 1± 1

0± 0 0± 0 0± 1 −4± 1 2± 2 1± 1 0± 0 0± 1 0± 0 0± 0

1± 0 0± 0 0± 0 −14± 3 1± 0 11± 3 1± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 −4± 1 0± 0 1± 0 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 −3± 1 0± 0 2± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−40

−20

0

20

(c) bird (d) cat

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 3± 2 0± 1 −4± 1 1± 1 0± 1 0± 1 0± 0 0± 0

0± 1 0± 0 1± 1 1± 3 −3± 1 1± 2 0± 1 0± 1 0± 0 0± 0

4± 1 0± 0 19± 3 10± 3 −67± 3 7± 2 8± 2 19± 4 1± 0 0± 0

0± 0 0± 0 0± 1 0± 1 −3± 1 1± 2 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 1± 0 0± 1 −2± 0 0± 0 1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 −3± 1 1± 0 0± 0 2± 2 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−40

−20

0

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 0 0± 0 2± 2 1± 1 0± 1 −4± 1 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 1± 1 11± 3 0± 1 −13± 3 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 0± 1 −2± 1 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 8± 3 43± 3 2± 1 −63± 4 2± 1 7± 2 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 0± 0 −2± 1 1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 2± 1 0± 0 −3± 1 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−40

−20

0

20

40

(e) deer (f) dog

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 1± 1 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 1

0± 1 0± 0 4± 2 0± 1 0± 1 0± 1 −5± 1 0± 1 0± 0 0± 0

0± 0 0± 0 1± 1 2± 2 1± 1 1± 1 −5± 1 0± 0 0± 0 0± 0

0± 0 0± 0 1± 1 0± 1 2± 2 0± 0 −3± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 1± 2 −2± 1 0± 1 0± 0 0± 0

1± 0 1± 1 21± 3 23± 6 13± 3 5± 2 −67± 9 1± 1 2± 1 1± 0

0± 0 0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 1± 1 0± 1 0± 0 0± 0 0± 1 −2± 1 0± 0 0± 0

0± 1 0± 0 0± 1 2± 2 0± 0 0± 1 0± 1 −3± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 4± 2 0± 0 0± 1 −5± 2 0± 0 0± 0

0± 0 0± 0 1± 0 1± 1 1± 0 2± 2 0± 0 −5± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 −1± 0 0± 0 0± 0

3± 1 0± 0 3± 1 5± 1 22± 7 10± 2 0± 0 −47± 7 0± 0 2± 1

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1
−40

−30

−20

−10

0

10

20

(g) frog (h) horse

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −4± 1 0± 0

0± 0 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 0± 1

0± 0 0± 0 0± 1 0± 1 0± 1 0± 1 0± 1 0± 0 −1± 0 0± 0

0± 0 0± 0 0± 0 1± 2 0± 0 0± 1 0± 1 0± 1 −1± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0 −1± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

31± 4 8± 2 1± 1 2± 1 1± 0 0± 0 1± 0 0± 0 −52± 6 8± 2

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 1± 1
−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

1± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −2± 0

0± 0 4± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −5± 1

0± 1 0± 0 1± 1 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 1± 2 0± 0 0± 1 0± 1 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 1 0± 1 0± 2 0± 0 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 1 0± 0 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 −1± 0

0± 1 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 −2± 0

7± 2 40± 6 1± 0 2± 0 0± 0 0± 0 0± 0 2± 1 5± 2 −57± 6

−40

−20

0

20

(i) ship (j) truck

Figure B.11: Simple CNN: The change in confusion matrix for all CIFAR10
classes, when class indicated by the caption, is removed.



140 B.3 Additional Results and Experimental Details

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l
−40± 6 3± 1 14± 3 1± 1 3± 1 1± 0 1± 0 1± 1 12± 3 5± 1

−2± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

−5± 1 0± 0 4± 2 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0 0± 0

−3± 1 0± 0 1± 1 1± 1 0± 1 0± 1 0± 1 0± 1 0± 0 0± 0

−2± 0 0± 0 1± 1 0± 1 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0

−1± 0 0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0

−1± 0 0± 0 1± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

−1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

−4± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 4± 2 0± 0

−2± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1

−30

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 −2± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1

3± 1 −28± 6 1± 0 1± 0 0± 0 0± 0 1± 1 0± 0 5± 1 17± 4

0± 0 −1± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 −1± 0 0± 0 1± 1 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 −1± 0 0± 1 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

0± 0 −2± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 0

0± 0 −7± 2 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 6± 2

−20

−10

0

10

(a) airplane (b) automobile

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

2± 1 0± 0 −4± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

8± 2 0± 0 −45± 5 7± 3 10± 2 7± 2 7± 1 4± 2 1± 1 0± 0

1± 0 0± 0 −5± 1 2± 2 0± 1 1± 1 1± 1 1± 1 0± 0 0± 0

0± 0 0± 0 −5± 1 1± 1 2± 1 1± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −4± 1 1± 1 0± 0 2± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −4± 1 0± 0 0± 0 0± 0 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 −2± 1 1± 0 0± 0 0± 0 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1
−40

−30

−20

−10

0

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 3± 2 −5± 1 0± 1 1± 0 0± 0 0± 0 0± 0 0± 0

2± 1 0± 0 4± 1 −47± 2 5± 2 24± 3 6± 3 3± 1 1± 0 1± 1

0± 0 0± 0 1± 0 −4± 1 2± 2 2± 1 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 1± 0 −13± 2 1± 1 10± 2 1± 1 1± 0 0± 0 0± 0

0± 0 0± 0 1± 1 −5± 2 0± 1 2± 1 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 −3± 1 0± 1 1± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1
−40

−30

−20

−10

0

10

20

(c) bird (d) cat

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 0 0± 0 4± 1 1± 0 −6± 1 0± 1 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 1± 1 3± 2 −4± 1 0± 1 1± 1 1± 1 0± 0 0± 0

2± 1 0± 0 11± 3 7± 2 −45± 6 6± 2 5± 2 13± 4 1± 0 0± 0

0± 0 0± 0 1± 0 1± 1 −3± 1 0± 1 0± 1 1± 1 0± 0 0± 0

0± 0 0± 0 1± 0 1± 1 −3± 1 0± 0 2± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 0 −4± 1 0± 0 0± 0 3± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −40

−30

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 3± 1 1± 1 0± 1 −5± 1 0± 0 1± 1 0± 0 0± 0

0± 0 0± 0 1± 1 10± 3 1± 1 −15± 2 1± 1 1± 1 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 1± 2 −3± 1 0± 1 1± 0 0± 0 0± 0

0± 0 0± 0 5± 1 25± 6 2± 1 −43± 5 3± 1 6± 2 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 0± 1 −2± 1 1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 0± 0 −4± 1 0± 0 2± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −40

−30

−20

−10

0

10

20

(e) deer (f) dog

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0 0± 0

0± 0 0± 0 3± 1 1± 1 0± 1 0± 0 −4± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 4± 2 0± 0 1± 1 −5± 2 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 1± 1 0± 0 −3± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 2 0± 0 1± 1 −2± 1 0± 0 0± 0 0± 0

1± 0 1± 1 10± 3 12± 4 8± 1 4± 2 −38± 4 1± 0 1± 1 1± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

−30

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 2± 1 0± 0 0± 1 0± 0 0± 0 −2± 1 0± 0 0± 0

0± 0 0± 0 1± 1 2± 2 0± 0 1± 2 0± 1 −4± 2 0± 0 0± 0

0± 0 0± 0 1± 1 1± 0 2± 2 1± 0 0± 0 −5± 1 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 1± 0 3± 2 0± 0 −5± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 1 −1± 0 0± 0 0± 0

2± 1 0± 0 3± 1 4± 1 11± 2 8± 2 0± 0 −30± 5 0± 0 2± 1

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 0 0± 0 1± 1

−20

−10

0

10

(g) frog (h) horse

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

3± 2 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −5± 2 0± 0

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 0± 0

0± 0 0± 0 1± 1 0± 1 0± 0 0± 0 0± 0 0± 0 −1± 1 0± 0

0± 0 0± 0 0± 0 1± 1 0± 0 0± 1 0± 1 0± 0 −1± 1 0± 0

0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 −1± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

16± 5 5± 2 1± 1 2± 1 1± 0 0± 0 1± 0 0± 0 −29± 7 4± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 1± 1

−20

−10

0

10

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

1± 1 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1

0± 0 4± 2 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −5± 1

0± 0 0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 −2± 1

0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 1 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 0 0± 1 0± 0 0± 1 0± 0 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 1 0± 0 0± 0 0± 0 0± 1 0± 0 0± 0 −1± 0

0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 0 −1± 1

0± 1 1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 −2± 0

5± 1 23± 5 1± 0 1± 1 0± 0 0± 0 1± 0 1± 1 3± 2 −35± 7 −30

−20

−10

0

10

20

(i) ship (j) truck

Figure B.12: Simple CNN without dropout: The change in confusion matrix
for all CIFAR10 classes, when class indicated by the caption, is removed. The
network has the same architecture as Tab. B.4, but without the dropout layers.
The performance drop is reduced by roughly 30%-40% compared to the same
architecture with dropout (Fig. B.11).



141 B.3 Additional Results and Experimental Details

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l
−91± 3 4± 2 40± 3 5± 3 4± 2 1± 1 2± 1 2± 1 21± 4 12± 2

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

−2± 1 0± 0 1± 2 0± 1 0± 1 0± 1 0± 1 0± 0 0± 0 0± 0

−1± 0 0± 0 1± 1 −2± 4 0± 1 1± 3 0± 1 0± 1 0± 0 0± 0

−1± 0 0± 0 0± 1 0± 1 1± 2 0± 1 0± 0 0± 1 0± 0 0± 0

−1± 0 0± 0 0± 1 −1± 2 0± 0 1± 3 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 1± 1 0± 1 0± 0 0± 1 −1± 2 0± 0 0± 0 0± 0

−1± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 1± 2 0± 0 0± 0

−3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 2 0± 1

−1± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −80

−60

−40

−20

0

20

40

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 1

2± 1 −96± 2 0± 0 1± 0 0± 0 0± 0 1± 1 0± 0 8± 2 84± 2

0± 0 0± 0 1± 2 −1± 1 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 −2± 2 0± 1 1± 1 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 0 1± 2 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 0 −1± 2 0± 1 0± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 1± 2 0± 0 0± 0

0± 1 −1± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 2 0± 0

0± 0 −3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 2± 1
−75

−50

−25

0

25

50

75

(a) airplane (b) automobile

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

3± 2 0± 0 −3± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −1± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

25± 3 0± 0 −90± 2 19± 5 15± 3 9± 2 16± 4 2± 1 1± 1 1± 0

0± 0 0± 0 −2± 1 1± 5 1± 1 0± 3 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 −2± 1 0± 1 3± 3 −1± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −2± 1 1± 3 1± 1 0± 3 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 −2± 1 0± 1 0± 0 0± 0 1± 2 0± 0 0± 0 0± 0

0± 0 0± 0 −1± 0 0± 1 1± 1 0± 1 0± 0 0± 2 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 −1± 0

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1 −80

−60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 −1± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 −1± 2 −2± 1 1± 0 1± 1 1± 1 0± 1 0± 0 0± 0

3± 1 1± 0 6± 3 −83± 3 6± 2 52± 3 10± 2 3± 2 2± 1 2± 1

0± 0 0± 0 0± 1 −2± 1 2± 2 1± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −7± 1 1± 0 6± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −2± 1 0± 0 0± 0 1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 −1± 1 0± 1 1± 1 0± 0 1± 2 0± 0 0± 0

−1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 2 −1± 1

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −1± 2 −80

−60

−40

−20

0

20

40

(c) bird (d) cat

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 2 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 0± 3 0± 1 −1± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 4 −1± 0 1± 2 0± 1 0± 1 0± 0 0± 0

3± 1 0± 0 23± 5 17± 4 −90± 2 22± 4 3± 1 21± 4 1± 0 0± 0

0± 0 0± 0 0± 1 −1± 2 −1± 0 1± 2 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 −1± 1 0± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −80

−60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

1± 1 0± 0 −1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

1± 1 0± 0 −1± 2 1± 1 0± 0 −2± 1 0± 0 0± 0 0± 0 0± 0

0± 1 0± 0 0± 1 7± 4 0± 1 −8± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 1± 2 −2± 1 0± 0 0± 0 0± 0 0± 0

1± 1 0± 0 9± 3 63± 6 4± 2 −88± 1 2± 1 7± 2 0± 0 0± 0

0± 0 0± 0 0± 1 1± 1 0± 0 0± 0 −1± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 1± 1 0± 0 −2± 1 0± 0 1± 1 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 0± 0

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1 −80

−60

−40

−20

0

20

40

60

(e) deer (f) dog

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

0± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1

0± 1 0± 0 1± 2 0± 1 0± 1 0± 1 −2± 0 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 3 1± 1 1± 2 −2± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 2± 3 0± 1 −1± 0 −1± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 2 0± 1 1± 2 0± 0 0± 0 0± 0 0± 0

2± 1 1± 0 35± 7 33± 7 8± 2 7± 3 −94± 1 1± 1 3± 2 4± 4

0± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 0± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1
−80

−60

−40

−20

0

20

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

2± 2 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −1± 1

0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1

0± 1 0± 0 1± 2 0± 1 0± 0 0± 1 0± 1 −1± 0 0± 0 0± 0

0± 0 0± 0 1± 1 0± 4 0± 0 −1± 3 0± 1 −1± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 2± 2 0± 1 0± 0 −2± 1 0± 0 0± 0

0± 0 0± 0 1± 1 1± 3 1± 1 −2± 3 0± 0 −1± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 −1± 1 0± 0 0± 0 0± 0

5± 2 1± 1 8± 2 9± 2 26± 7 41± 8 0± 0 −93± 1 0± 0 2± 1

0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 2 0± 1

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −1± 1
−80

−60

−40

−20

0

20

40

(g) frog (h) horse

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

2± 2 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1 −1± 1

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 1

0± 1 0± 0 1± 2 −1± 1 0± 0 0± 1 0± 0 0± 0 0± 0 0± 0

0± 0 0± 0 1± 1 −2± 4 1± 1 0± 2 0± 1 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 1 1± 2 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 −1± 2 0± 1 0± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 0± 2 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 1± 2 0± 0 0± 0

62± 5 15± 4 2± 1 1± 0 1± 0 0± 0 3± 1 1± 0 −94± 2 10± 3

0± 0 1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −1± 0 −1± 1 −80

−60

−40

−20

0

20

40

60

air
pla

ne

au
tom

ob
ile bir

d ca
t

de
er do

g
fro

g
ho

rse sh
ip

tru
ck

Predicted label

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

Tr
ue

la
be

l

2± 2 0± 0 −1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 1 −2± 1

0± 0 2± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 −2± 1

1± 1 0± 0 −1± 2 0± 1 0± 0 0± 1 0± 1 0± 0 0± 0 0± 0

0± 0 0± 0 0± 1 0± 3 0± 1 1± 2 0± 1 0± 1 0± 0 −1± 0

0± 0 0± 0 0± 1 0± 1 0± 3 0± 1 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 2 0± 1 0± 2 0± 0 0± 1 0± 0 0± 0

0± 0 0± 0 0± 1 0± 1 0± 0 0± 0 −1± 2 0± 0 0± 0 0± 0

0± 0 0± 0 0± 0 0± 1 0± 1 0± 1 0± 0 0± 1 0± 0 0± 0

1± 1 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 0± 0 1± 1 −1± 0

15± 1 69± 4 0± 0 2± 1 0± 0 0± 0 0± 0 1± 0 8± 3 −95± 1
−75

−50

−25

0

25

50

(i) ship (j) truck

Figure B.13: ResNet-110: The change in confusion matrix for all CIFAR10
classes, when class indicated by the caption, is removed.



Appendix C

Additional Details on Improving the
Systematic Generalization of
Transformers

C.1 Evaluation Metrics

For all tasks, the accuracy is computed on the sequence level, i.e. all tokens in
the sequence should be correct for the output to be counted as correct. For the
losses, we always report the average token-wise cross-entropy loss.

C.2 Hyperparameters

For all of our models, we use an Adam optimizer with the default hyperparame-
ters of PyTorch [Paszke et al., 2019]. We only change the learning rate. We use
dropout with probability of 0.1 after each component of the transformer: both
after the attention heads and linear transformations. We specify the dataset-
specific hyperparameters in Tab. C.1. For all universal transformer experiments,
we use both the “No scaling” and the “Positional Embedding Downscaling”
methods. For the standard transformers with absolute positional embedding
we test different scaling variants on different datasets shown in Tab. C.3. When
multiple scaling methods are available, we choose the best performing ones
when reporting results in Tab. 4.4. We always use the same number of layers
for both encoder and decoder. The embedding and the final softmax weights
of the decoder are always shared (tied embeddings). All of our transformers
are post-layenorm [Xiong et al., 2020], matching the configuration of Dai et al.

142



143 C.3 Relative Positional Embedding

[2019].
The number of parameters for different models and the corresponding to

representative execution time is shown in Tab. C.2.

C.3 Relative Positional Embedding

We use the relative positional embedding variant of self-attention from Dai et al.
[2019]. Here, we use a decomposed attention matrix of the following form:

Arel
i,j =H

⊤
i W

⊤
q Wk,EHj︸ ︷︷ ︸
(a)

+H⊤
i W

⊤
q Wk,PPi−j︸ ︷︷ ︸
(b)

+u⊤Wk,EHj︸ ︷︷ ︸
(c)

+v⊤Wk,PPi−j︸ ︷︷ ︸
(d)

where Hi is the hidden state of the ith column of the transformer, Pi is an em-
bedding for position (or in this case distance) i. Matrix Wq maps the states to
queries, Wk,E maps states to keys, while Wk,P maps positional embedding to
keys. u and v are learned vectors. Component (a) corresponds to content-based
addressing, (b) to content based relative positional addressing, (c) represents a
global content bias, while (d) represents a global position bias.

We use sinusoidal positional embedding Pi ∈ Rdmodel . The relative position,
i, can be both positive and negative. Inspired by Vaswani et al. [2017], we define
Pi,j as:

Pi,j =

{
sin(i/100002j/dmodel), if j = 2k

cos(i/100002j/dmodel) if j = 2k + 1
(C.1)

Before applying softmax, Arel
i,j is scaled by 1√

dmodel
, as in the original model

by Vaswani et al. [2017].
We never combine absolute with relative positional embedding. In case of

a relative positional variant of any transformer model, we do not add absolute
positional encoding to the word embeddigs. We use relative positional attention
in every layer, except at the interface between encoder and decoder, where we
use the standard formulation from Vaswani et al. [2017], without adding any
positional embedding.

C.4 Embedding Scaling

In this section, we provide full descriptions of embedding scaling strategies that
we investigated. In the following, wi denotes the word index at input position



144 C.5 Analyzing the Positively Correlated Loss and Accuracy

i, Ew ∈ Rdmodel denotes learned word embedding for word index w. Positional
embedding for position i is defined as in Eq. C.1.

Token Embedding Upscaling. Vaswani et al. [2017] combine the input word
and positional embeddings for each position i as Hi =

√
dmodelEwi

+

Pi. Although in the original paper, the initialization of E is not dis-
cussed, most implementations use Glorot initialization [Glorot and Bengio,
2010], which in this case means that each component of E is drawn from
U(−

√
6

dmodel+Nwords
,
√

6
dmodel+Nwords

) where U(a, b) represents the uniform distribu-

tion in range [a, b].

No scaling. This corresponds to how PyTorch initializes embedding layers by
default: each element of E is drawn from N (0, 1). N (µ, σ) is the normal dis-
tribution with mean µ and standard deviation of σ. The word embeddings are
combined with the positional embeddings without any scaling: Hi = Ewi

+Pi

Position Embedding Downscaling. We propose to use Kaiming initialization
[He et al., 2015] for the word embeddings: each element of E ∼ N (0, 1√

dmodel
).

Instead of scaling up the word embeddings, the positional embeddings are
scaled down: Hi = Ewi

+ 1√
dmodel

Pi

C.5 Analyzing the Positively Correlated Loss and Ac-
curacy

In Sec. 4.2.2, we reported that on the generalization splits of some datasets
both the accuracy and the loss grow together during training. Here, we further
analyze this behavior in Fig. C.2 (see the caption).

C.6 Additional Results

Fig. C.1 shows that both the test loss and accuracy grows on COGS dataset
during training. Additionally, it shows the expected, IID behavior on the same
dataset for contrast.

Fig. C.3 shows the relative change in convergence speed when using relative
positional embeddings.



145 C.6 Additional Results

10−2 10−1

Validation loss

95

100

Va
l.

ac
cu

ra
cy

[%
]

1k

50k

(a) COGS: IID Validation set

4.25 4.50 4.75 5.00 5.25 5.50 5.75
Test loss

0

25

50

75

Te
st

ac
cu

ra
cy

[%
]

1k

50k

(b) COGS: Generalization test set

Figure C.1: Relationship between the loss and accuracy on (a) IID validation set
and (b) the generalization test set on COGS (it comes without a validation set
for the generalization splits). Standard transformers are used. The color shows
the training step. Five runs are shown. The loss is shown on a logarithmic scale.
On the IID validation set (a), the accuracy increases when the loss decreases,
as expected. On the contrary, in the generalization split (b), high accuracy cor-
responds to higher loss. For generalization validation loss versus generalization
accuracy on CFQ MCD 1, see Fig. 4.2. For an analysis of the underlying reason,
see Fig. C.2.



146 C.6 Additional Results

d
m

odel
d
FF

n
head

n
layers

batch
size

learning
rate

w
arm

up
scheduler

SC
A
N

128
256

8
3

256
10

−
3

-
-

C
FQ

-N
on-uni.

128
256

16
2

4096
0.9*

4000
N
oam

C
FQ

-U
ni.

256
512

4
6

2048
2.24*

8000
N
oam

PC
FG

512
2048

8
6

64
10

−
4

-
-

C
O

G
S

512
512

4
2

128
10

−
4

-
-

C
O

G
S
N
oam

512
512

4
2

128
2

4000
N
oam

M
athem

atics
512

2048
8

6
256

10
−
4

-
-

Table
C

.1:
H
yperparam

eters
used

for
differenttasks.

W
e

denote
the

feedforw
ard

size
as

d
FF .

For
the

learning
rate

of
C
FQ

(denoted
by

*),
the

learning
rate

seem
ingly

differs
from

Keysers
et

al.
[2020].

In
fact,

although
Keysers

et
al.

[2020]use
N
oam

learning
rate

scheduling,scaling
by

1
√

d
m

odel is
notused,so

w
e

had
to

com
pensate

for
this

to
m

ake

them
functionally

equivalent.



147 C.6 Additional Results

Dataset Model #params Duration GPU type

SCAN

Standard 992k 1:30

Titan X Maxwell
Universal 333k 1:15
Relative Pos. 1.1M 1:45
Universal, Relative Pos. 366k 1:30

CFQ MCD 2

Standard 685k 10:00

Tesla V100
Universal 1.4M 12:00
Relative Pos. 751k 14:15
Universal, Relative Pos. 1.5M 14:00

PCFG Systematicity

Standard 44.7M 20:30

Tesla V100
Universal 7.9M 17:00
Relative Pos. 47.8M 21:30
Universal, Relative Pos. 8.4M 21:30

COGS

Standard 9.3M 17:30

Tesla V100
Universal 5.1M 17:15
Relative Pos. 10.3M 21:00
Universal, Relative Pos. 5.6M 20:00

Math: add_or_sub

Standard 4.4M 8:00

Tesla P100
Universal 7.4M 7:30
Relative Pos. 4.7M 8:30
Universal, Relative Pos. 7.9M 8:00

Table C.2: Model sizes and execution times. One representative split is shown
per dataset. Other splits have the same number of parameters, and their execu-
tion time is in the same order of magnitude.

TEU No scaling PED

SCAN ✓ ✓
CFQ MCD ✓ ✓
CFQ Length ✓ ✓ ✓
PCFG Productivity ✓ ✓ ✓
PCFG Systematicity ✓ ✓ ✓
COGS ✓ ✓ ✓
Mathematics ✓ ✓

Table C.3: Scaling types used for standard transformers with absolute positional
embedding on different datasets. TEU denotes Token Embedding Upscaling,
PED denotes Position Embedding Downscaling.



148 C.6 Additional Results

Init
Trafo

U
ni.

Trafo
Rel.

Trafo
Rel.

U
ni.

T.
Reported

SC
A
N

(cutoff=
26)

PED
0.30

±
0.02

0.21
±

0.01
-

-
0
.00

[1
]

N
oS

0.15
±

0.07
0.14

±
0.05

0.72
±

0.21
1.00

±
0.00

C
FQ

O
utputlen.

PED
0.56

±
0.02

0.60
±

0.34
-

-
∼

0.66
[2
]

TEU
0.57

±
0.00

0.74
±

0.02
†

-
-

N
oS

0.53
±

0.04
0.77

±
0.02

0.64
±

0.06
0.81

±
0.01

C
FQ

M
C
D

1
PED

0.36
±

0.02
0.37

±
0.05

-
-

0
.37

±
0.02

[3
]

N
oS

0.40
±

0.01
0.39

±
0.03

0.39
±

0.01
0.39

±
0.04

C
FQ

M
C
D

2
PED

0.08
±

0.01
0.09

±
0.01

-
-

0
.08

±
0.02

[3
]

N
oS

0.10
±

0.01
0.09

±
0.02

0.09
±

0.01
0.10

±
0.02

C
FQ

M
C
D

3
PED

0.10
±

0.00
0.11

±
0.00

-
-

0
.11

±
0.00

[3
]

N
oS

0.11
±

0.00
0.11

±
0.01

0.11
±

0.01
0.11

±
0.03

C
FQ

M
C
D

m
ean

PED
0.18

±
0.13

0.19
±

0.14
-

-
0
.19

±
0.01

[2
]

N
oS

0.20
±

0.14
0.20

±
0.14

0.20
±

0.14
0.20

±
0.14

Table
C

.4:
Test

accuracy
of

different
transform

er
(Trafo)

variants
and

different
initializations

on
the

considered
datasets.

This
is

a
m

ore
detailed

version
of

Tab.
4.4.

W
e

shorten
the

”N
o

scaling”
variant

as
”N

oS”.
The

last
col-

um
n

show
s

previously
reported

accuracies.
References:

[1]
N
ew

m
an

et
al.

[2020],
[2]

Keysers
et

al.
[2020],

[3]
https://github.com/google-research/google-research/tree/master/cfq.

Results
m

arked
w
ith

∗
cannot

be
directly

com
pared

because
ofdifferenttraining

setups.∼
denotes

im
precise

num
bers

read
from

charts
in

priorw
orks.

For
the

configuration
m

arked
by

†,the
results

are
obtained

by
running

8
seeds

from
w

hich
3

crashed,resulting
in

5
usefulruns

reported
below

.
C
rashed

runs
suddenly

drop
their

accuracy
to

0,
w

hich
never

recovers.
The

reason
for

the
crashing

is
the

overly
big

learning
rate

(2.24,from
the

baseline).
W

e
run

another
10

seeds
w
ith

learning
rate

of
2.0,obtaining

sim
ilarfinalaccuracy

of
0.75±

0.02,butw
ithoutany

crashed
runs.

Part1/2.
Forpart2/2,see

Tab.C
.5.

https://github.com/google-research/google-research/tree/master/cfq


149 C.6 Additional Results

In
it

Tr
af
o

U
ni

.
Tr

af
o

Re
l.

Tr
af
o

Re
l.

U
ni

.
T.

Re
po

rt
ed

...

PC
FG

Pr
od

.
sp

lit
PE

D
0.
65

±
0.
03

0.
78

±
0.
01

-
-

0
.5
0
±
0
.0
2[
4
]

TE
U

0.
47

±
0.

27
0.
78

±
0.
01

-
-

N
oS

0.
63

±
0.

02
0.

76
±

0.
01

-
0.
85

±
0.
01

PC
FG

Sy
s.

sp
lit

PE
D

0.
87

±
0.
01

0.
93

±
0.
01

-
-

0
.7
2
±
0
.0
0[
4
]

TE
U

0.
75

±
0.

08
0.

92
±

0.
01

-
-

N
oS

0.
86

±
0.

02
0.

92
±

0.
00

0.
89

±
0.
02

0.
96

±
0.
01

C
O

G
S

PE
D

0.
80

±
0.
00

0.
77

±
0.

02
-

-
0
.3
5
±
0
.0
6[
5
]

TE
U

0.
78

±
0.

03
0.
78

±
0.
03

-
-

N
oS

0.
62

±
0.

06
0.

51
±

0.
07

0.
81

±
0.
01

0.
77

±
0.
01

M
at
h:

ad
d_

or
_s

ub
PE

D
0.

80
±

0.
01

0.
92

±
0.

02
-

-
∼

0
.9
1[
6
]∗

N
oS

0.
89

±
0.
01

0.
94

±
0.
01

0.
91

±
0.
03

0.
97

±
0.
01

M
at
h:

pl
ac

e_
va

lu
e

PE
D

0.
00

±
0.

00
0.
20

±
0.
02

-
-

∼
0
.6
9[
6
]∗

N
oS

0.
12

±
0.
07

0.
12

±
0.

01
-

0.
75

±
0.
10

Ta
bl

e
C

.5
:
Te

st
ac

cu
ra

cy
of

di
ffe

re
nt

tra
ns

fo
rm

er
(T
ra

fo
)v

ar
ia
nt

s
an

d
di

ffe
re

nt
in

iti
al
iz
at
io

ns
on

th
e
co

ns
id

er
ed

da
ta
se

ts
.

Th
is

is
a

m
or

e
de

ta
ile

d
ve

rs
io

n
of

Ta
b.

4.
4.

W
e

sh
or

te
n

th
e

”N
o

sc
al
in

g”
va

ria
nt

as
”N

oS
”.

Th
e

la
st

co
lu

m
n

sh
ow

s
pr

ev
io

us
ly

re
po

rt
ed

ac
cu

ra
ci
es

.
Re

fe
re

nc
es

:
[4

]
H

up
ke

s
et

al
.
[2

02
0]

,
[5

]
Ki

m
an

d
Li
nz

en
[2

02
0]

,
[6

]
Sa

xt
on

et
al
.

[2
01

9]
.
Re

su
lts

m
ar

ke
d

w
ith

∗
ca

nn
ot

be
di

re
ct
ly

co
m

pa
re

d
be

ca
us

e
of

di
ffe

re
nt

tra
in

in
g
se

tu
ps

.
∼

de
no

te
s
im

pr
ec

is
e

nu
m

be
rs

re
ad

fro
m

ch
ar

ts
in

pr
io

r
w
or

ks
.

Fo
r
th

e
co

nf
ig
ur

at
io

n
m

ar
ke

d
by

†,
th

e
re

su
lts

ar
e

ob
ta
in

ed
by

ru
nn

in
g

8
se

ed
s
fro

m
w

hi
ch

3
cr

as
he

d,
re

su
lti

ng
in

5
us

ef
ul

ru
ns

re
po

rt
ed

be
lo

w
.
C
ra

sh
ed

ru
ns

su
dd

en
ly

dr
op

th
ei

ra
cc

ur
ac

y
to

0,
w

hi
ch

ne
ve

r
re

co
ve

rs
.
Th

e
re

as
on

fo
r
th

e
cr

as
hi

ng
is

th
e

ov
er

ly
bi

g
le
ar

ni
ng

ra
te

(2
.2

4,
fro

m
th

e
ba

se
lin

e)
.
W

e
ru

n
an

ot
he

r
10

se
ed

s
w
ith

le
ar

ni
ng

ra
te

of
2.

0,
ob

ta
in

in
g

si
m

ila
r
fin

al
ac

cu
ra

cy
of

0.
75

±
0.
02

,
bu

tw
ith

ou
ta

ny
cr

as
he

d
ru

ns
.
Pa

rt
2/

2.
Fo

rp
ar

t1
/2

,s
ee

Ta
b.

C
.4

.



150 C.6 Additional Results

0 10k 20k 30k 40k 50k
Training steps

2

4

6

Lo
ss

“Good”
“Bad”
Total

(a) Decomposed loss

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Loss

0

2000

4000

C
ou

nt

Training step 1k
Training step 50k

(b) Histogram of “good” loss (first and last
measurement)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Loss

0

200

400

600

C
ou

nt

Training step 1k
Training step 50k

(c) Histogram of “bad” loss (first and last
measurement)

Figure C.2: Analysis of the growing test loss on the systematically different test
set on CFQ MCD 1 split. We measure the loss individually for each sample in
the test set. We categorize samples as “good” if the network output on the corre-
sponding input matched the target exactly any point during the training, and as
“bad” otherwise. (a) The total loss (increasing) can be decomposed to the loss
of the “good” samples (decreasing), and the loss of the “bad” samples (increas-
ing). (b, c) The histogram of the loss for the “good” and “bad” samples at the
beginning and end of the training. The loss of the “good” samples concentrates
near zero, while the “bad” samples spread out and the corresponding loss can
be very high. The net effect is a growing total loss.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

PCFG
CFQ MCD 1
CFQ MCD 2
CFQ MCD 3

COGS
Math: add or sub
Math: place value Trafo

Uni. Trafo

Figure C.3: Relative change in convergence speed by using relative positional
embeddings instead of absolute. Convergence speed is measured as the mean
number of steps needed to achieve 80% of the final performance of the model.
Relative variants usually converge faster. Universal transformers benefit more
than the non-universal ones. The non-universal variants are not shown for PCFG
and “Math: place_value”, because the relative variants do not converge (see
Sec. 4.2.1).



151 C.6 Additional Results

Va
ria

nt
Tr

an
sf
or

m
er

Re
l.

Tr
af
o

U
ni

.
Tr

af
o

Re
l.

U
ni

.
Tr

af
o

C
FQ

M
C
D

1
Bi

g
0.
40

±
0
.0
1

0
.3
9
±
0
.0
2

0
.4
1
±
0
.0
3

0
.4
2
±
0.
02

Sm
al
l

0.
26

±
0
.0
2

0
.3
2
±
0
.0
1

0
.2
8
±
0
.0
0

0
.3
6
±

0.
01

Ra
tio

0.
65

0.
80

0.
68

0.
85

C
FQ

M
C
D

2
Bi

g
0.
10

±
0
.0
1

0
.0
9
±
0
.0
1

0
.0
9
±
0
.0
0

0
.0
9
±
0.
02

Sm
al
l

0.
05

±
0
.0
1

0
.0
7
±
0
.0
1

0
.0
4
±
0
.0
1

0
.1
0
±

0.
01

Ra
tio

0.
51

0.
76

0.
50

1.
05

C
FQ

M
C
D

3
Bi

g
0 .
11

±
0
.0
0

0
.1
1
±
0
.0
1

0
.1
1
±
0
.0
1

0
.1
2
±
0 .
02

Sm
al
l

0.
09

±
0
.0
0

0
.0
9
±
0
.0
0

0
.0
9
±
0
.0
1

0
.1
1
±

0.
01

Ra
tio

0.
80

0.
85

0.
85

0.
98

C
FQ

O
ut

.
le
n.

Bi
g

0.
57

±
0
.0
2

0
.6
4
±
0
.0
4

0
.7
6
±
0
.0
3

0
.8
1
±
0.
02

Sm
al
l

0.
41

±
0
.0
3

0
.5
1
±
0
.0
2

0
.5
5
±
0
.0
2

0
.7
0
±

0.
03

Ra
tio

0.
72

0.
80

0.
73

0.
87

Ta
bl

e
C

.6
:
A
cc

ur
ac

y
of

di
ffe

re
nt

tra
ns

fo
rm

er
va

ria
nt

s
on

C
FQ

.“
Bi

g”
va

ria
nt

ha
s
a

ba
tc
h

si
ze

of
40

96
,a

nd
is

tra
in

ed
w
ith

N
oa

m
sc

he
du

le
r
(le

ar
ni

ng
ra

te
0.

9)
.

“S
m

al
l”

va
ria

nt
ha

s
a

ba
tc
h

si
ze

of
51

2
an

d
a

fix
ed

le
ar

ni
ng

ra
te

of
10

−
4
.

Th
e

ra
tio

of
ac

cu
ra

ci
es

of
“s

m
al
l”

an
d

“b
ig
”

va
ria

nt
s
ar

e
al
so

sh
ow

n
in

th
e

“R
at
io

”
co

lu
m

n,
in

di
ca

tin
g

th
e

re
la
tiv

e
pe

rf
or

m
an

ce
dr

op
ca

us
ed

by
de

cr
ea

si
ng

th
e
ba

tc
h

si
ze

.
Re

la
tiv

e
va

ria
nt

s
ex

pe
rie

nc
e
le
ss

ac
cu

ra
cy

dr
op

.



152 C.6 Additional Results

D
ataset

#train
#IID

val.
#gen.

test
#gen.

val.
Voc.

size
Train

len.
Testlen.

Scan
(cutoff=

26)
1
6
458

1828
2624

-
19

9/26
9/48

C
FQ

M
C
D

1
9
5
743

-
11968

11968
181

29/95
30/103

C
FQ

M
C
D

2
9
5
743

-
11968

11968
181

29/107
30/91

C
FQ

M
C
D

3
9
574

3
-

11968
11968

181
29/107

30/103
C
FQ

O
utputLen.

1
0
065

4
-

9512
9512

181
29/77

29/107

PC
FG

Prod.
8
1
010

-
11333

-
535

53/200
71/736

PC
FG

Sys.
8
2
168

-
10175

-
535

71/736
71/496

C
O

G
S

2
4
155

3000
21000

-
871

22/153
61/480

M
ath:

add_or_sub
1
969

0
29

10000
10000

-
69

60/19
62/23

M
ath:

place_value
149

2
268

9988
10000

-
69

50/1
52/1

Table
C

.7:
D
atasetstatistics.

“#
”
denotes

num
ber

ofsam
ples.

Vocabulary
size

show
s
the

union
ofinputand

output
vocabularies.

Train
and

testlength
denotes

the
m

axim
um

input/outputlength
in

the
train

and
testset,respectively.



Appendix D

Additional Details for Achieving
Length Generalization with
Transformers

D.1 Ablations

Readout from the first instead of the last column. In our experiments with
the transformer models, the last column was used for the readout of the result.
Under this configuration, the readout position depends on the length of the se-
quence, which might increase the difficulty of the problem, in particular for the
models using absolute positional embeddings. Tab. D.1 shows the correspond-
ing ablation study. We observe that this choice has only a marginal impact on
the model performance. As a side note, we also tried the variant in which an
additional cross-attention layer is used for the readout. Again, the generalization
performance was not better. In fact, these results are not surprising since none
of these changes fundamentally addresses the problem of length generalization.

Does Adaptive Computation Time (ACT) help? In this work, we determined
the number of layers/steps to be used in the model based on heuristics (see Ap-
pendix D.3.1). We could also consider using Adaptive Computation Time (ACT)
to dynamically determine the number of steps. Furthermore, ACT introduces a
form of gating that creates shortcuts in the credit assignment path between the
output and a result of an intermediate layer. This “copying” mechanism resulting
from the ACT (i.e. stop computation at a certain time and copy the result to the
output) is fundamentally different from our copy gate (Sec. 5.1.1). Our copy gate
allows transformer columns to keep the input unchanged until it is their turn to

153



154 D.1 Ablations

IID Longer

Model Readout Forward Backward Forward Backward

Transformer First 1.00 ± 0.00 0.82 ± 0.39 0.12 ± 0.01 0.13 ± 0.01
Last 1.00 ± 0.00 0.82 ± 0.39 0.13 ± 0.01 0.12 ± 0.01

+ rel First 1.00 ± 0.00 1.00 ± 0.00 0.12 ± 0.01 0.22 ± 0.05
Last 1.00 ± 0.00 1.00 ± 0.00 0.23 ± 0.05 0.13 ± 0.01

+ rel + gate First 1.00 ± 0.00 1.00 ± 0.00 0.17 ± 0.02 1.00 ± 0.00
Last 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.19 ± 0.04

Table D.1: Accuracy on compositional table lookup dataset with the results read
from the first or last column (Readout).

be processed (a crucial property to implement control flow like behavior). This
behavior cannot be simulated by the ACT. Here we provide some experimen-
tal results on models with ACT which confirm that the proposed copy gate is a
crucial component for generalization which cannot be replaced by ACT.

We note that there are various versions of ACT in the literature, e.g., the vari-
ant used by Dehghani et al. [2019] in universal transformers is different from the
one used by Graves [2016]. Here, we focus on two variants: one in which we
directly apply Graves [2016] to transformers, and another one used by Dehghani
et al. [2019]. We start with the description of the former.

An extra sigmoidal unit p̂(i,t) is computed for each column i in each timestep
t as:

p̂(i,t) = σ(WHh
(i,t) + bH) (D.1)

where WH ∈ R1×d and bH ∈ R are trainable parameters. By comparing the
cumulative sum of p̂(i,t) over time steps to a certain threshold value (1− ϵ) with a
hyper-parameter ϵ (0.01 in our experiment), we determine the termination step
T i for column i as:

T i = min{Tmax,min{t′ :
t′∑

t=1

p̂(i,t) ≥ 1− ϵ}} (D.2)

where Tmax is the pre-defined maximum number of steps.



155 D.1 Ablations

The corresponding halting probability p(i,t) is then computed as:

p(i,t) =

{
p̂(i,t) if t < T i

Ri if t = T i
(D.3)

Ri = 1−
T i−1∑
t=1

p̂(i,t) (D.4)

which is used to compute the final output of column i as:

oi =
T i∑
t=1

p(i,t)h(i,t) (D.5)

In the variant of Dehghani et al. [2019], a different equation is used in lieu of
Eq. D.5 above, and the calculation of the reminder term Ri in Eq. D.4 above is
not properly handled in case where Eq. D.2 terminates due to the first condition
on Tmax. For further details, we refer the reader to Listings 1 and 2 by Dehghani
et al. [2019] and/or our public code.

One subtlety introduced by Dehghani et al. [2019] which we note here is
that the calculation of the final output oi of column i effectively “halts” after T i

(since oi only depends on h(i,t) for 0 < t < T i), but column i itself still continues
to transform the hidden states h(i,t) for steps t > T i until all columns reach
the termination step, and its updated states can be attended/read by another
column j which has not halted yet (i.e. T j > T i). In this sense, computation
is never stopped independently for each column. The mechanism described
above instead finds the readout steps for each column (as used in Eq. D.5). We
follow this decision in our implementation of both variants.

In addition, a new regularizer term LACT = α 1
N

∑N
i=1 R

i is added to the loss
function, where N is the length of the input sequence. This makes the network
prefer short computations. We ran a hyperparameter search for α from the fol-
lowing values: 0.001, 0.003, 0.01, 0.03, 0.1. We found that α = 0.03 works the
best.

We conducted experiments on the compositional table lookup task. We
first noticed that ACT helps training our baseline transformer models with a
maximum step of 14 layers, which was not possible without ACT (our baseline
transformer had only 11 layers for this reason; see Tab. D.3). The shortcut in
the credit assignment path introduced by ACT certainly helps training of this 14-
layer model. As we noticed that the models with ACT learn slower than those
with gating, we increased the number of training steps to 60k steps, which is
twice as many as 30k used for the models without ACT. Tab. D.2 shows the



156D.2 Details of Attention with Combined Absolute/Relative Positional Encoding

results. We observe that, interestingly, ACT enables generalization for longer
lengths in the forward direction of the transformer with relative positional en-
coding and the one with geometric attention. However, we were not able to
find any configuration that generalizes in the backward case. This demonstrates
that the copy gate is effectively a crucial component for generalization that can-
not be replaced by ACT. Furthermore, the convergence of models with ACT is
significantly slower than those of models with our gating, and they are more
unstable and very sensitive to the value of α on the regularization term, even
in the successful forward case. Overall, the only benefit of ACT is therefore the
adaptive depth, as illustrated in Fig. D.1, which is orthogonal to our study.

3 4 5 6 7 8 9 10 11 12 13
Sequence length

0

5

10

15

N
um

.
of

st
ep

s

Figure D.1: Average number of steps/layers for different sequence lengths on
the compositional table lookup task for the transformer with relative positional
encodings and the ACT variant described in Appendix D.1. The red line shows
Tmax = 14. Note that the sequence length shown here includes the begin and
end tokens. Thus, the sequence length of 4 corresponds to one function appli-
cation (3 for the identity function i.e. no function is applied).

D.2 Details of Attention with Combined Abso-
lute/Relative Positional Encoding

The use of copy gates enables transformers to generalize to longer lengths in the
forward presentation order of the CTL task (Sec. 5.2.1), but that alone was not
enough to make the model generalize in the backward order variant of the task.
Examining the attention maps reveals that the model uses position-based atten-
tion to read out the result instead of content-based attention. In the backward
presentation order, the last column of the transformer should focus on the sec-
ond column, whose relative position changes dynamically with the length of the
sequence. To verify that this is indeed the root cause of the network failure, we
added an option to choose between absolute and relative positional encodings



157 D.3 Implementation Details

to the attention head.
In what follows, we describe the operation within a single layer/step. This

allows us to omit the layer/step-index t for better readability, and thus denote the
state of column/position i as hi instead of h(i,t). We use the relative positional
embedding variant of self-attention by Dai et al. [2019]. Our attention matrix
with the gated absolute/relative positional encodings can be decomposed as
follows:

ri = σ(hiWar + bar) (D.6)

Âi,j = h
⊤
i W

⊤
q Wk,Ehj︸ ︷︷ ︸
(a)

+ b⊤q,EWk,Ehj︸ ︷︷ ︸
(c)

+
(
h⊤

i W
⊤
q Wk,P︸ ︷︷ ︸
(b)

(D.7)

+ b⊤q,PWk,P︸ ︷︷ ︸
(d)

) (
pi−jri + pj(1− ri)︸ ︷︷ ︸

(e)

)

where the matrixWq ∈ Rdhead×d maps the states to queries,Wk,E ∈ Rdhead×d maps
states to keys, whileWk,P ∈ Rdhead×d maps positional embeddings to keys. dhead

is the size of the key, query and value vectors for each head, set as dhead =
d

nhead
.

bq,E, bq,P ∈ Rdhead are learned vectors. pi ∈ Rd is the standard sinusoidal em-
bedding for position i [Vaswani et al., 2017]. Softmax is applied to the second
dimension of Â to obtain the final attention scores, A. Component (a) corre-
sponds to content-based addressing, (b, e) to content-based positional address-
ing, (c) represents a global content bias, while (d, e) represent a global position
bias.

We introduce the term (e) for the positional embedding which can switch be-
tween absolute and relative positional encodings using the scalar gate ri (Eq. D.6;
parameterized byWar ∈ Rd×1 and bar ∈ R), which is the function of the state at
the target position i.

As can be seen from Tab. 5.1, Tab. 5.3 and Tab. 5.4, this helps in specific
settings, but unlike geometric attention, it fails in others. This is as expected
sincemore complex access plates can still overfit to either the absolute or relative
position component.

D.3 Implementation Details

A PyTorch implementation of our models together with the experimental setup is
available under https://github.com/robertcsordas/ndr. The performance
of all models is reported as mean and standard deviations over 5 different seeds.

https://github.com/robertcsordas/ndr


158 D.3 Implementation Details

D.3.1 Choosing the number of layers

In Sec. 5.1, we hypothesized that one of the conditions for our model to gen-
eralize is to be “sufficiently” deep such that elementary operations are learned
in separate layers which would then become composable. In practice, a “suf-
ficient” depth can be determined by the basic units of compositions implicitly
defined by the dataset. The depth of the model must be at least as deep as the
deepest path in the computation graph defined by these basic operations. This
hypothesis was empirically validated in the ablation study presented above (Ap-
pendix D.1). In general, we used the following heuristics to choose the depth
of the transformers:

(length of the deepest path in the graph) × (steps per operation) + a few more
layers.

Determining the number of steps needed by the elementary operation is not
straightforward, but can be done empirically. For example, for ListOps, as shown
in Sec. 5.3, requires two steps per operation: one step in which the operands
attend to the operation, followed by another one where the result is written
back to the operation. For other tasks, we found that a single step per operation
was enough. Choosing more layers than needed is safe, and it can be used to
determine the required number of layers, for example, by looking at the gate
activity. Finally, “+ a few more layers” are needed because an additional layer
should be used to read out the final result, and one or a few more can be needed
for communication between columns (e.g., to determine operator precedence).

Since the parameters are shared across layers, we can optionally train mod-
els with a certain number of layers and increase the number of computational
steps at test time. This allows us to train models using a depth that is “sufficient”
to solve the training set but increases it at test time to generalize to a test set
requiring more computational steps. We did this for the ListOps experiment
(Sec. 5.2.3): the model was trained with 20 layers and tested with 24. Our pre-
liminary experiments confirmed that this practice has no performance penalty,
while it speeds up training.

D.3.2 Dataset Details

Compositional table lookup. Our implementation uses 8 symbols as input
arguments and 9 randomly sampled bijective functions denoted by lowercase
letters of the English alphabet. All functions are included in the train set in com-
bination with all possible input symbols. The rest of the training set consists of



159 D.3 Implementation Details

random combinations of functions applied to a random symbol as an argument,
up to length 5. The total size of the train set is 53,704 samples. The samples are
roughly balanced so that there are similar numbers of samples for each depth.
There are different validation sets: an IID set, which matches the distribution of
the train set, and a depth validation, which includes samples of lengths 6, 7 and
8. The test set consists of sequences of lengths 9 and 10.

Simple arithmetic. The dataset is constructed by sampling random digits (0-9)
and operations + (add) and ∗ (multiply). The operations are performed modulo
10. Parentheses surround the arguments of the operations. The depth of the
resulting tree is computed, and rejection sampling is used to ensure that the same
number of samples from each depth is present in the given split. The maximum
length of samples is 50 tokens, sub-operations are sampled with probability 0.2.
100K samples are used for training, 1 K for both test and validation sets. The
train set consists of 0-5 operations, the validation set of 6 and the test set of 7
operations.

ListOps. Random digits are sampled from range 0-9. Operations are sampled
from the set sum-modulo (SM), which is a sum modulo 10, min (MIN), max (MAX)
and median followed by the floor function (MED). The maximum number of ar-
guments for each operation is 5. A sub-operation is sampled with probability
0.3. 1M samples are used for training, 1 K for test and validation. The train set
consists of 0-5 operations, 6 for the validation set, and 7 for the test set.

For each sample, we calculate a number that we call dependence depth. To
understand it, note that the MIN and MAX operations only select one of their
operands, MED selects 1 or 2. In SUM, all operands are needed to perform
the operation. If we construct a parse tree and prune away the branches that
were not selected by any operation and measure the depth of such a tree, the
resulting number is the dependency depth. This ensures that the deeper parts of
the tree contribute to the result calculation, preventing shallow heuristics, such
as ignoring all branches of the tree that are too deep and still getting the correct
result with a high probability. We also ensure that the number of samples is the
same for all possible dependency depths in each split.

D.3.3 Model Details

We use the AdamW optimizer [Loshchilov and Hutter, 2019] for all our models.
Standard hyperparameters are listed in Tab. D.3, D.4 and D.5. Additionally,



160 D.3 Implementation Details

models with gating use dropout [Hanson, 1990; Srivastava et al., 2014] applied
to the content-based query and the position-query components of 0.1 for most
models, except for non-gated transformers on ListOps, where this value is 0.05.
In the case of geometric attention, since the channels of the directional encoding
does not have any redundancy, dropout is applied just to the content query.

In the case of transformers with the copy gate but without geometric atten-
tion, we use tanh instead of LayerNorm in Eq. 5.2. The transformer/NDR layer
with a copy gate is illustrated in Fig. 5.1.

The hyperparameters of the gateless transformers differ significantly from the
gated ones. This is because they were very hard to train to achieve good per-
formance even on the IID set, requiring extensive hyperparameter tuning. One
might argue that fewer layers make them less competitive on longer sequences.
However, we were unable to train them to perform well even on IID data with
comparable sizes.

All transformer variants have a begin (B) and end (E) token included in the
sequence. RNNs (LSTM and DNC) do not have such tokens. All transformers
are encoders only, and the results are read from the last column (corresponding
to the end token).

The DNC has 21 memory cells, 4 read heads, and an LSTM controller. It
contains recently introduced improvements [Csordás and Schmidhuber, 2019].

We use gradient clipping with magnitude 5 (for CTL) or 1 (for simple arith-
metic and ListOps) for all of our models.

The hyperparameters were obtained by a Bayesian hyperparameter search of
Weights & Biases1 over the systematically different (OOD) validation set for the
+abs/rel + gate models and were reused for all other gated models. For the
non-gated models, we used the +rel variant for tuning. It was not possible to
tune the baselines using only the OOD validation set because their performance
was too bad on that set. Therefore, we used a mixture of IID and OOD validation
sets to tune the hyperparameters for the baselines. Tab. D.6 shows the range of
hyperparameters used for tuning. “FF multiplier” is used to calculate dFF from
dmodel.

We train all models for a fixed number of niters iterations and measure their
validation performance every 1000 iterations. For eachmodel, we select the best
checkpoint according to the validation performance, and report its test accuracy.

1https://wandb.ai/

https://wandb.ai/


161 D.4 Additional Analysis

D.4 Additional Analysis

D.4.1 Compositional Table Lookup

An idealized sequence of computations in a transformer for an example from
CTL task is shown in Fig. D.2. Each column waits for its input from the left side,
then performs an update. Finally, the last column copies the result. So far, in the
main text, we only had space to show the gate and attention activity of the NDR
for a few timesteps. Here we show the corresponding visualization of all steps
in Figures D.6 and D.7, as well as the attention map for the baseline transformer
with relative positional encoding in Fig. D.3. We also show the Transformer
+ abs/rel + gate variant in Fig. D.4 and Fig. D.5. Please directly refer to the
caption of the figures for the corresponding analysis. In general, the visualization
for our NDR and the abs/rel + gate variant is easily interpretable, unlike that
of the baseline transformer model.

Figure D.2: An ideal sequence of computations in a transformer for an example
CTL task.

D.4.2 ListOps

Figures D.8 and D.10 show the attention and gate patterns of our NDR architec-
ture on an example from the ListOps dataset. We highlighted notable attention
patterns in Sec. 5.3.

Different heads seem to specialize in different functions. As already men-
tioned in Sec. 5.3, head 13 of the NDR architecture, shown in Fig. D.9, seems
to specialize in selecting which arguments belong to which operator.

The gating patterns are also very interesting. In the early stages, the deepest
parts of the input are updated: [MAX 2 4 0 8 9] and [MED 8 5 8], which are
independent branches of the parse tree that can be processed in parallel. In the
following steps, the update patterns spread up in the parse tree, updating the
operations that have their arguments available. In this task, the input is read
from the first column, which is written in a very late stage.



162 D.4 Additional Analysis

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 0

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 1

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 2

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 3

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 4

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 5

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 6

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 7

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 8

B b i b d g g a h e c
10

0 E

B
b
i

b
d
g
g
a
h
e
c

100
E

t = 9

0.0

0.2

0.4

0.6

0.8

1.0

Figure D.3: Attention map for every computational step for a baseline trans-
former with relative positional encoding on CTL. The attention pattern becomes
blurry very quickly and the model does not generalize to longer sequences.



163 D.4 Additional Analysis

IID
Lo

ng
er
,6

0k
Lo

ng
er
,3

0k

M
od

el
A
C
T

Fo
rw

ar
d

Ba
ck

w
ar

d
Fo

rw
ar

d
Ba

ck
w
ar

d
Fo

rw
ar

d
Ba

ck
w
ar

d

Tr
an

sf
or

m
er

1.
00

±
0.

00
0.

82
±

0.
39

-
-

0.
13

±
0.

01
0.

12
±

0.
01

A
1.
00

±
0.

00
1.
00

±
0.

00
0.

12
±

0.
02

0.
12

±
0.

01
0.

13
±

0.
01

0.
13

±
0.

01
U

1.
00

±
0.

00
1.
00

±
0.

00
0.

12
±

0.
01

0.
11

±
0.

01
0.

13
±

0.
01

0.
12

±
0.

01

+
re

l
1.
00

±
0.

00
1.
00

±
0.

00
-

-
0.

23
±

0.
05

0.
13

±
0.

01
A

1.
00

±
0.

00
1.
00

±
0.

00
0.

99
±

0.
02

0.
13

±
0.

00
0.

84
±

0.
22

0.
13

±
0.

01
U

1.
00

±
0.

00
1.
00

±
0.

00
0.

92
±

0.
14

0.
12

±
0.

02
0.

67
±

0.
41

0.
12

±
0.

00

+
ge

o
0.

96
±

0.
04

0.
93

±
0.

06
-

-
0.

16
±

0.
02

0.
15

±
0.

02
A

1.
00

±
0.

00
1.
00

±
0.

00
0.

97
±

0.
05

0.
45

±
0.

21
0.

58
±

0.
16

0.
30

±
0.

17
U

0.
96

±
0.

10
1.
00

±
0.

00
0.

72
±

0.
35

0.
44

±
0.

19
0.

31
±

0.
22

0.
21

±
0.

07

+
re

l+
ga

te
1.
00

±
0.

00
1.
00

±
0.

00
-

-
0.
99

±
0.
01

0.
19

±
0.

04
+

ab
s/
re

l+
ga

te
1.
00

±
0.

00
1.
00

±
0.

00
-

-
0.
98

±
0.
02

0.
98

±
0.
03

+
ge

o
+

ga
te

(N
D
R
)

1.
00

±
0.

00
1.
00

±
0.

00
-

-
1.
00

±
0.
00

1.
00

±
0.
00

Ta
bl

e
D

.2
:
A
cc

ur
ac

y
on

co
m
po

si
tio

na
lt

ab
le

lo
ok

up
da

ta
se

tw
ith

ad
ap

tiv
e

co
m

pu
ta
tio

n
tim

e
(A

C
T)

.T
w
o

va
ria

nt
s
of

A
C
T

ar
e

sh
ow

n:
“U

”
co

rr
es

po
nd

s
to

D
eh

gh
an

i
et

al
.
[2

01
9]

,
w

hi
le

“A
”

is
th

e
va

ria
nt

de
sc

rib
ed

in
A
pp

en
di

x
D
.1

.
W

e
al
so

in
cl
ud

e
ba

se
lin

es
w
ith

ou
tA

C
T

fro
m

Ta
b.

5.
1

as
a

re
fe
re

nc
e.

G
en

er
al
iz
at
io

n
pe

rf
or

m
an

ce
af

te
r
30

k
an

d
60

k
tr
ai
ni
ng

st
ep

s
ar

e
sh

ow
n.



164 D.4 Additional Analysis

d
m

odel
d
FF

n
heads

n
layers

batch
s.

learning
rate

w
d.

do.
n

iters

LSTM
200

-
-

1
256

10
∗
10

−
4

-
0.5

20k
BidirectionalLSTM

400
-

-
1

256
10

∗
10

−
4

-
0.5

20k
D
N
C

200
-

-
1

256
10

∗
10

−
4

-
0.5

20k

Transform
er

128
256

4
11

512
1.5

∗
10

−
4

0.0025
0.1

30k
+

rel
128

256
4

11
512

1.5
∗
10

−
4

0.0025
0.1

30k
+

rel+
gate

256
512

1
14

512
2
∗
10

−
4

0.01
0.5

30k
+

abs/rel+
gate

256
512

1
14

512
2
∗
10

−
4

0.01
0.5

30k
+

geom
.
att.

128
256

4
11

512
1.5

∗
10

−
4

0.0025
0.1

30k
+

N
D
R

256
512

1
14

512
1.5

∗
10

−
4

0.01
0.5

30k

Table
D

.3:
H
yperparam

eters
used

for
differentm

odels
on

the
com

positionaltable
lookup

task.
W

e
denote

the
feed-

forw
ard

size
as

d
FF ,w

eightdecay
as

“w
d.”,dropoutas

“do.”.
The

m
odelis

trained
for

n
iters iterations.



165 D.4 Additional Analysis

d
m

od
el

d
FF

n
he

ad
s

n
la
ye

rs
ba

tc
h

s.
le
ar

ni
ng

ra
te

w
d.

do
.

n
ite

rs

LS
TM

20
0

-
-

2
25

6
10

∗
10

−
4

-
0.

5
20

0k
Bi

di
re

ct
io

na
lL

ST
M

40
0

-
-

2
25

6
10

∗
10

−
4

-
0.

5
20

0k

Tr
an

sf
or

m
er

12
8

25
6

4
11

51
2

1.
5
∗
10

−
4

0.
00

25
0.

5
20

0k
+

re
l

12
8

25
6

4
11

51
2

1.
5
∗
10

−
4

0.
00

25
0.

5
20

0k
+

ab
s/
re

l+
ga

te
25

6
10

24
4

15
51

2
1.
5
∗
10

−
4

0.
01

0.
5

10
0k

+
N
D
R

25
6

10
24

4
15

51
2

1.
5
∗
10

−
4

0.
01

0.
5

10
0k

Ta
bl

e
D

.4
:
H
yp

er
pa

ra
m

et
er

s
us

ed
fo

rd
iff

er
en

tm
od

el
s
on

th
e
si
m

pl
e
ar

ith
m

et
ic

ta
sk

.
W

e
de

no
te

th
e
fe
ed

fo
rw

ar
d

si
ze

as
d
FF
,w

ei
gh

td
ec

ay
as

“w
d.

”,
dr

op
ou

ta
s
“d

o.
”.

Th
e
m

od
el

is
tra

in
ed

fo
rn

ite
rs

ite
ra

tio
ns

.



166 D.4 Additional Analysis

d
m

odel
d
FF

n
heads

n
layers

batch
s.

learning
rate

w
d.

do.
n

iters

LSTM
512

-
-

4
512

10
∗
10

−
4

0.08
0.1

200k
BidirectionalLSTM

1024
-

-
4

512
10

∗
10

−
4

0.08
0.1

200k

Transform
er

256
1024

16
6

512
4
∗
10

−
4

0.05
0.015

200k
+

rel
256

1024
16

6
512

4
∗
10

−
4

0.05
0.015

200k
+

abs/rel+
gate

512
1024

16
20

512
2
∗
10

−
4

0.09
0.1

100k
+

N
D
R

512
1024

16
20

512
2
∗
10

−
4

0.09
0.1

100k

Table
D

.5:
H
yperparam

eters
used

for
differentm

odels
on

the
ListO

ps
task.

W
e

denote
the

feedforw
ard

size
as

d
FF ,

w
eightdecay

as
“w

d.”,dropoutas
“do.”.

The
m

odelis
trained

for
n

iters iterations.



167 D.4 Additional Analysis

Parameter Range

learning rate 0.00005 ... 0.001
nlayers 4 ... 20
dmodel 128, 256, 512
nheads 2, 4, 8, 16
weight decay 0.0 ... 0.1
dropout 0.0 ... 0.5
attention dropout 0.0 ... 0.5
FF multiplier 1, 2, 4

Table D.6: Parameter ranges for hyperparameter tuning



168 D.4 Additional Analysis

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 0

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 1

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 2

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 3

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 4

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 5

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 6

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 7

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 8

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 9

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 10

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 11

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 12

B d b b i b h d h a d
11

0 E

B
d
b
b
i

b
h
d
h
a
d

110
E

t = 13

0.0

0.2

0.4

0.6

0.8

Figure D.4: Attention map for every computational step for a transformer with
gating and relative/absolute positional encoding (presented in Fig. 5.3) on CTL.
The attention pattern is relatively stable over time, and it gets blurrier only after
the given column is processed and updated. The gate sequence for the same
input can be seen in Fig. D.5.



169 D.4 Additional Analysis

B d b b i b h d h a d
11

0 E

t = 0

B d b b i b h d h a d
11

0 E

t = 1

B d b b i b h d h a d
11

0 E

t = 2

B d b b i b h d h a d
11

0 E

t = 3

B d b b i b h d h a d
11

0 E

t = 4

B d b b i b h d h a d
11

0 E

t = 5

B d b b i b h d h a d
11

0 E

t = 6

B d b b i b h d h a d
11

0 E

t = 7

B d b b i b h d h a d
11

0 E

t = 8

B d b b i b h d h a d
11

0 E

t = 9

B d b b i b h d h a d
11

0 E

t = 10

B d b b i b h d h a d
11

0 E

t = 11

B d b b i b h d h a d
11

0 E

t = 12

B d b b i b h d h a d
11

0 E

t = 13

0.0

0.2

0.4

0.6

0.8

Figure D.5: Gates for every computational step for a transformer with gating
and relative/absolute positional encoding on CTL. The gates are closed until all
arguments of the given operation become available. The attention maps for the
same input can be seen in Fig. D.4.



170 D.4 Additional Analysis

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 0

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 1

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 2

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 3

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 4

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 5

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 6

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 7

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 8

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 9

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 10

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 11

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 12

B f d c c f h a i b a
00

1 E

B
f

d
c
c
f

h
a
i

b
a

001
E

t = 13

0.0

0.2

0.4

0.6

0.8

1.0

Figure D.6: Attention map for every computational step of the NDR on CTL. The
network correctly and clearly focuses on the last element of the sequence, and
the last sharp read happens in step 10 - corresponding to the 10 function calls
in the example. The gate sequence for the same input can be seen in Fig. D.7.



171 D.4 Additional Analysis

B f d c c f h a i b a
00

1 E

t = 0

B f d c c f h a i b a
00

1 E

t = 1

B f d c c f h a i b a
00

1 E

t = 2

B f d c c f h a i b a
00

1 E

t = 3

B f d c c f h a i b a
00

1 E

t = 4

B f d c c f h a i b a
00

1 E

t = 5

B f d c c f h a i b a
00

1 E

t = 6

B f d c c f h a i b a
00

1 E

t = 7

B f d c c f h a i b a
00

1 E

t = 8

B f d c c f h a i b a
00

1 E

t = 9

B f d c c f h a i b a
00

1 E

t = 10

B f d c c f h a i b a
00

1 E

t = 11

B f d c c f h a i b a
00

1 E

t = 12

B f d c c f h a i b a
00

1 E

t = 13

0.0

0.2

0.4

0.6

0.8

1.0

Figure D.7: Gates for every computational step of the NDR on CTL. The gates
remain closed until all arguments of the given operations become available. The
attention maps for the same input can be seen in Fig. D.6.



172 D.4 Additional Analysis

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 0

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 1

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 2

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 3

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 4

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 5

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 6

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 7

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 8

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 9

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 10

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 11

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 12

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 13

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 14

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 15

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 16

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 17

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 18

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 19

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 20

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 21

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 22

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 23

Figure D.8: Attention maps for every computational step of the NDR on ListOps.
The network has 16 heads; the max of them is shown. The input has only depth
4, which explains the early stopping of the computation, roughly after 8-9 steps,
after which the attention barely changes. The corresponding gate maps for the
same input can be seen in Fig. D.10.



173 D.4 Additional Analysis

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 0

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 1

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 2

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 3

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 4

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 5

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 6

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 7

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 8

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 9

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 10

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 11

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 12

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 13

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 14

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 15

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 16

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 17

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 18

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 19

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 20

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 21

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 22

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

B
[SM

[MED
[MIN

1
7
4

[MAX
2
4
0
8
9
]
]

7
]

5
[MED

8
5
8
]

0
7
]

E

t = 23

Figure D.9: Attention maps for head 13 of the NDR in every computational step
on ListOps. This head shows the operands for each operation. Following it, we
observe the hierarchy and the order in which the operations are performed.



174 D.4 Additional Analysis

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 0

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 1

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 2

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 3

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 4

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 5

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 6

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 7

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 8

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 9

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 10

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 11

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 12

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 13

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 14

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 15

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 16

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 17

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 18

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 19

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 20

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 21

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 22

B
[S

M
[M

ED
[M

IN 1 7 4
[M

AX 2 4 0 8 9 ] ] 7 ] 5
[M

ED 8 5 8 ] 0 7 ] E

t = 23

Figure D.10: Gates for every computational step of the NDR on ListOps. Gates
open for the deepest operations in the tree, processing proceeds upwards in
the computational tree. The input has only depth 4, which explains the early
stopping of the computation, roughly after 8-9 steps. The attention maps for the
same input can be seen in Fig. D.8.



IN

Ga

Gb

OUT

Figure E.1: Sampling graph for variant ‘R.’

Appendix E

More Details on Inspecting
Systematicity of Neural Networks

E.1 Experimental Details

E.1.1 Modified NDR architecture

We experimentally found some architectural modifications to the original NDR
[Csordás et al., 2022a] that yield faster convergence and produce more stable re-
sults than the original architecture. Here we describe our modifications. We use
the GELU activation function [Hendrycks and Gimpel, 2016] instead of ReLU
[Fukushima, 1969], and a residual connection in the feedforward data path. Con-
cretely, Eq. 5 by Csordás et al. [2022a] is replaced by Eq. E.1 below, while Eq.
2 is replaced by Eq. E.2 below. We do not use any dropout in Eq. E.1.

FFN(x) =W2 GELU(W1x+ b1) + b2 (E.1)

u(i,t+1) = LN(FFNdata(a(i,t+1)) + a(i,t+1)) (E.2)

175



176 E.1 Experimental Details

where LN denotes layer normalization [Ba et al., 2016].

E.1.2 Hyperparameters

Dataset. The train set in all of our experiments consists of 300k examples. The
maximum number of composed functions is 6. We make sure that we obtain an
equal number of samples for different lengths whenever possible (in some cases
this is impossible because by construction, there are fewer short examples than
long ones). In ‘A’ and ‘R’ variants, single functions are always part of the training
set with all possible symbols. There are in total 8 symbols and 32 functions. All
samples are presented in a right-to-left manner (e.g. “c b a 3”). The IID and
OOD test sets contain 1000 examples in all cases. Our code generates the data
for given dataset specifications (number of functions etc). The seed for data
generation is fixed.

Training. Unless noted otherwise, for all of our models, we use a batch size of
512, a learning rate of 0.00015, and a dropout rate [Hanson, 1990; Srivastava
et al., 2014] of 0.5. We also use a linear learning rate warmup for the first 500
iterations. We use PyTorch’s [Paszke et al., 2019] adaptive mixed precision and
bin the batches by length for greater efficiency. We use the AdamW optimizer
[Loshchilov and Hutter, 2019]. The NDR and bi-LSTM is trained for 80k and
the transformers for 300k iterations. We find the standard transformer to be
very unstable even in the IID setting. In fact, for Tab. 6.1, unlike other models
trained for 25 seeds, we train the transformer for 50 seeds: the 25 seeds used
to report mean and std in Tab. 6.1 are those among 50 which converged within
300k training iterations. For Figs. 6.4, E.3 and E.4, five seeds were used for
each configuration. All of our models are trained on a single P100 GPU. The
corresponding number of parameters, training steps and average wall-clock time
is shown in Tab. E.1.

Model Num. params Num. steps Runtime

Bi-LSTM 408k 80k 0:18
Transformer 672k 300k 3:37
NDR 679k 80k 1:22

Table E.1: Training details for different models. Runtime is in hour:min.



177 E.2 More Analyses and Plots

Models. For transformer and NDR, we use 8 layers, and 4 heads. NDR uses
a gate dropout of 0.1, state size of 256, feedforward size of 1024. Transformers
use a state size of 128 and feedforward size of 512, layer sharing [Dehghani et al.,
2019], and Transformer-XL-style [Dai et al., 2019] relative positional encoding.
For bidirectional LSTM, we use 1 layer with 256 units (128 per direction). The
gradient is clipped to max norm of 1 for NDR and 5 for transformer and LSTM.
Transformers use a weight decay of 0.0025.

E.2 More Analyses and Plots

E.2.1 Quantitative Analysis of Incompatibility

Here we provide additional results on the analysis of Sec. 6.3.1 conducted for
variant ‘R.’ To quantify the correlation between the clusters (C1 and C2) iden-
tified in Fig. 6.3b and the compatibility of representations, we measured the
proportion of correct output classifications, by taking the first function from a
given cluster and the second one from a given group, for all pairs of functions
for each pair of the form (cluster, group). The results are shown in Fig. E.2.
Fig. E.2a shows that the first cluster C1 is effectively compatible only with func-
tions fromGa, while the second oneC2 works with bothGa andGb, as predicted
by Fig. 6.3b. Fig. E.2b shows the same analysis, but uses the groups to define
the cluster. As predicted by Fig. 6.3b, only roughly half of the functions from
Ga generate representations compatible with Gb, while all representations gen-
erated by functions in Gb are compatible with all in Ga.

E.2.2 Representative Cosine Similarities

Here we show additional visualizations similar to those of Fig. 6.3. In Fig. E.5
and E.6, we plot cosine similarities of functional outputs for all possible symbols
for successful and failed seeds of NDR on variant ‘R.’ The symbol representations
are taken from the layer right below the final classification layer. They are repre-
sentative examples; the observation holds over all seeds we inspected. Fig. E.7
shows a similar example for variant ‘A.’



178 E.2 More Analyses and Plots

Ga Gb

C1

C2

1.00 0.15

1.00 1.00

0.0

0.5

1.0

(a) Performance of each clus-
ter vs. each group

Ga Gb

Ga

Gb

1.00 0.52

1.00 1.00

0.0

0.5

1.0

(b) Performance for each pair
of groups

Figure E.2: Accuracymeasured after two successive function applications, for the
symbol corresponding to Fig. 6.3b. (a) shows the proportion of correct outputs
when the first function is taken from a given cluster (y-axis), and the second from
a given group (x-axis). Clusters are shown in the main diagonal of Fig. 6.3b. (b)
is analogous to (a) but using groups as clusters.

2 3 4 5 6
No. of symbols/function

4

8

12

16

N
o.

of
fu

nc
tio

ns

0.09± 0.0 0.15± 0.0 0.12± 0.0 0.24± 0.1 0.23± 0.0

0.14± 0.0 0.15± 0.0 0.33± 0.1 0.38± 0.1 0.53± 0.1

0.17± 0.0 0.20± 0.1 0.31± 0.1 0.59± 0.2 0.97± 0.0

0.27± 0.0 0.63± 0.2 0.82± 0.2 1.00± 0.0 1.00± 0.0

Figure E.3: Final test performance of the transformer on variant ‘S.’ The behavior
is similar to the one shown in Fig. 6.4. For lower numbers of shared functions,
performance is worse. Interestingly, however, with 16 shared functions, it out-
performs NDR.



179 E.2 More Analyses and Plots

2 3 4 5 6
No. of symbols/function

4

8

12

16
N

o.
of

fu
nc

tio
ns

0.16± 0.0 0.15± 0.0 0.20± 0.0 0.37± 0.0 0.33± 0.0

0.17± 0.0 0.25± 0.0 0.31± 0.0 0.50± 0.0 0.69± 0.0

0.23± 0.0 0.32± 0.0 0.45± 0.1 0.68± 0.1 0.92± 0.1

0.23± 0.0 0.31± 0.0 0.64± 0.1 0.83± 0.0 0.97± 0.0

Figure E.4: Final test performance of bi-directional LSTM on variant ‘S.’ The
behavior is similar to the one shown in Fig. 6.4. For lower numbers of shared
functions, the performance is worse. Interestingly, however, with 16 shared
functions, it significantly underperforms NDR.

a b c d h kmp r u v w x ABCg l o E f n j q t De y F i z s

a
b
c
d
h
k

m
p
r
u
v
w
x
A
B
C
g
l

o
E
f

n
j

q
t

D
e
y
F
i

z
s

Symbol 0

h y ABDa b c k o t EF j l n q r s u v w x z Ce i md f g p

h
y
A
B
D
a
b
c
k
o
t

E
F
j
l

n
q
r
s
u
v
w
x
z
C
e
i

m
d
f

g
p

Symbol 1

f n a b c d e g i j k l mo pwB t x z CF h s y Dq r u AE v

f
n
a
b
c
d
e
g
i
j

k
l

m
o
p
w
B
t
x
z
C
F
h
s
y
D
q
r
u
A
E
v

Symbol 2

a b c s u y F r t z emo v B d h f g i j k l n p qw x CDEA

a
b
c
s
u
y
F
r
t
z
e
m
o
v
B
d
h
f

g
i
j

k
l

n
p
q
w
x
C
D
E
A

Symbol 3

emo b c d h j k l q r s u v w x y z ABCDEF a f g i n p t

e
m
o
b
c
d
h
j

k
l

q
r
s
u
v
w
x
y
z
A
B
C
D
E
F
a
f

g
i

n
p
t

Symbol 4

n s d l b c e i kmo p q r t u v w x y z ACEF a j f g hDB

n
s
d
l

b
c
e
i

k
m
o
p
q
r
t

u
v
w
x
y
z
A
C
E
F
a
j
f

g
h
D
B

Symbol 5

a b c d f g h j k o p q r t u v x y z ABCDEF l me i s wn

a
b
c
d
f

g
h
j

k
o
p
q
r
t

u
v
x
y
z
A
B
C
D
E
F
l

m
e
i

s
w
n

Symbol 6

f n s Dw x e g a c h i l mo p q v y z BE b d j r t u ACF k

f
n
s
D
w
x
e
g
a
c
h
i
l

m
o
p
q
v
y
z
B
E
b
d
j
r
t

u
A
C
F
k

Symbol 7

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.5: Symbol cosine similarity between different functions for NDR on
variant ‘R.’ A representative example from a seed that performs perfectly on
unseen compositions. Functions indicated by red belong to Ga, by blue to Gb.



180 E.2 More Analyses and Plots

a b c d e f g h i j kmn o p q r s t u v w x y z ABCDEF l

a
b
c
d
e
f

g
h
i
j

k
m
n
o
p
q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F
l

Symbol 0

d e f g i j k l mn o p a b h c q r s t u v w x y z ABCDEF

d
e
f

g
i
j

k
l

m
n
o
p
a
b
h
c
q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F

Symbol 1

a b c d f g h i j l mn o q r s t u v w x y z ABCDEF e k p

a
b
c
d
f

g
h
i
j
l

m
n
o
q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F
e
k
p

Symbol 2

a b c e f j mo p d g h i k l n q r s t u v w x y z ABCDEF

a
b
c
e
f
j

m
o
p
d
g
h
i

k
l

n
q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F

Symbol 3

b c d e g h i j k l mn o q r s t u v w x y z ABCDEF a f p

b
c
d
e
g
h
i
j

k
l

m
n
o
q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F
a
f

p

Symbol 4

a c e f g h i l q r s t u v w x y z ABCDEF b d j kmn o p

a
c
e
f

g
h
i
l

q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F
b
d
j

k
m
n
o
p

Symbol 5

q r s t u v w x y z ABCDEF a b c d e f g h i j k l mn o p

q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F
a
b
c
d
e
f

g
h
i
j

k
l

m
n
o
p

Symbol 6

g k a b d e f h i j l mn o q r s t v w x y z BCDEF u A c p

g
k
a
b
d
e
f

h
i
j
l

m
n
o
q
r
s
t
v
w
x
y
z
B
C
D
E
F
u
A
c
p

Symbol 7

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.6: Symbol cosine similarity between different functions for NDR on
variant ‘R.’ A representative example from a seed that performs poorly on unseen
compositions. Functions indicated by red belong to Ga, by blue to Gb.

a b c d e f g h k l mn o p q i j r s t u v w x y z ABCDEF

a
b
c
d
e
f

g
h
k
l

m
n
o
p
q
i
j
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F

Symbol 0

a b d e f g h i j kmo p c l n z q r s t u v w x y ABCDEF

a
b
d
e
f

g
h
i
j

k
m
o
p
c
l

n
z
q
r
s
t

u
v
w
x
y
A
B
C
D
E
F

Symbol 1

q r s t u v w x y z ABCDEF l o a b c d e f g h i j kmn p

q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F
l

o
a
b
c
d
e
f

g
h
i
j

k
m
n
p

Symbol 2

q r s t u v w x y z ABCDEF a b d e f g h i j l mn o p c k

q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F
a
b
d
e
f

g
h
i
j
l

m
n
o
p
c
k

Symbol 3

r s t uw x y z ACDEF q v B a p b c d e f g h i j k l mn o

r
s
t

u
w
x
y
z
A
C
D
E
F
q
v
B
a
p
b
c
d
e
f

g
h
i
j

k
l

m
n
o

Symbol 4

r s t u v w x y z ABDEF qCa b c d e f g h i j k l mn o p

r
s
t

u
v
w
x
y
z
A
B
D
E
F
q
C
a
b
c
d
e
f

g
h
i
j

k
l

m
n
o
p

Symbol 5

q r s v w x y z BDE c d e g h i l mn p a j o b f t u ACF k

q
r
s
v
w
x
y
z
B
D
E
c
d
e
g
h
i
l

m
n
p
a
j

o
b
f
t

u
A
C
F
k

Symbol 6

q r s t u v w x y z ABCDEF f j mn a b c d e g h i k l o p

q
r
s
t

u
v
w
x
y
z
A
B
C
D
E
F
f
j

m
n
a
b
c
d
e
g
h
i

k
l

o
p

Symbol 7

0.0

0.2

0.4

0.6

0.8

1.0

Figure E.7: Symbol cosine similarity between different functions for NDR on
variant ‘A.’ A representative example from a seed that performs poorly on unseen
compositions. Functions indicated by red belong to Ga, by blue to Gb.



Appendix F

Additional Details of Accelerating
Transformer MLP Layers: a Path
Towards Scalable NDRs

F.1 Further Details and Analyses

F.1.1 Definition of normalised Top-K

Using the setting of Sec. 7, we define the normalized top-K operation as follows:

Ex = arg topk(s, K) (F.1)

topk(s)[i] =
{
s[i] if i ∈ Ex
0 otherwise

(F.2)

norm topk(s) = topk(s)∑
i topk(s)[i] (F.3)

F.1.2 Measuring the Number of Active Channels in

In order to explore whether a (ki - vi) sparsity-based approach is feasible, we
measure the number of nonzero entries in the up-projected vector u in our
baseline models (which, because of the ReLU activation function, is the same
as the positive entries). We show the results of our 47M model in Fig. 7.1.
Note that dff = 2053 (See Tab. F.2) for the same model, which means that on
average only 1-10% of the channels are active. We show the same analysis for
the 262M model in Fig. F.1. Interestingly, the counts remain the same, even
though dff = 4110 for this model. The 41M parameter model on Enwik8 shows

181



182 F.1 Further Details and Analyses

a stark difference in the distribution of the channels between layers; see Fig. F.2.
This suggests that the key factor determining the count distribution is the dataset,
and the size of the model plays only a secondary role. Fortunately, the sparsity
is very high for all models considered.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Layer

0

200

400

A
ct

iv
e

ch
an

ne
ls

Figure F.1: Number of active channels in u in our dense 262M parameter model
on Wikitext-103. dff = 4110 for this model, so the sparsity is below ∼ 5%.
Standard deviation over all tokens of the test and validation set.

F.1.3 More Details and Results on PKM

Our PKM (Sec. 7.2.2) is based on Lample et al. [2019] with the following basic
modifications. First, we do not use batch normalization (BN). As Lample et al.
[2019] shows that BN is only beneficial for models with a very large memory
size, we remove it as it simplifies inference where the effective batch size varies
over time. Also, we directly divide the input vectors into two sub-keys without
an additional projection. Finally, unlike Lample et al. [2019], we use the same
learning rate for all parts of the network.

In addition to the parameter-equal comparison of Sec. 7.5.2, there is another
possibly “fair” way of setting the size of the PKM-based model: match the num-
ber of values (this would result in fewer parameters because of the key approx-
imation), even though Elhage et al. [2022] suggest that the keys typically play
a vital role, and reducing their capacity will cause a performance loss. See
Tab. F.1 for the corresponding results. Note that, for Enwik8 and Wikitext-103
small, the parameter-equal setting increases the number of sub-keys from 46 to
62 (2116 vs. 3844 values). This helps significantly.



183 F.1 Further Details and Analyses

1 2 3 4 5 6 7 8 9 10 11 12

Layer

0

100

200

300
A

ct
iv

e
ch

an
ne

ls

Figure F.2: Number of active channels in u in our dense 41M parameter model
on Enwik8. dff = 2053 for this model, thus the sparsity is below∼ 15%. Standard
deviation over all tokens of the test and validation set.

F.1.4 Further Analyses of Our σ-MoE

We also examine the best (G, K) given a constant number (G · K) of active
pairs ki, vi. In this setting, reducing K by a factor of m (K ′ = K

m
) involves

increasing G (G′ = mG), which, for a constant number of parameters, reduces
NE to N ′

E = NE

m
. The results can be seen in the 2nd block of Tab. F.4. We find

that a higher K is beneficial. Given this, we ask the question how the selection
distribution of themodels withK > 1 is different from selecting the same experts
together and acting as a larger expert. Are these models combining experts in
more meaningful ways? To test this, we measure the distribution of experts that
are used together on Wikitext-103 with our 47M MoE model with K = 4. The
result can be seen in Fig. F.3: the network combines experts in a rich way, further
supporting the use of K > 1. Note that, it remains an open question whether
such “compositions” may help the generalization and compositional behavior
of the network [Fodor et al., 1988; Pagin and Westerståhl, 2010; Hupkes et al.,
2020].

We also include expert usage statistics for all layers of our WT-S* model from
Tab. F.4. The results are shown on Fig. F.4. For a more detailed discussion,
please refer to Sec. 7.5.3.



184 F.2 Implementation Details

Variant Setting Nonlinearity WT-S WT-M E8

Dense Baseline ReLU 11.81 9.46 1.08

PKM value-count Softmax 14.11 11.29 1.20
PKM value-count ReLU 13.32 10.16 1.12
PKM # total params. Softmax 13.96 11.10 1.16
PKM # total params. ReLU 12.77 9.98 1.11

PKM + init # total params. ReLU 12.75 9.96 1.11

Table F.1: The performance of the PKM model variants. Both value-count and
parameter-matched variants are shown. Additionally, we show the effect of the
initialization inspired by our unified view, which is marginal for PKMs.

F.1.5 More on Resource Efficiency

For execution time and memory usage, both the dense MLP and the MoE layers
are linear in dmodel (Fig. F.6), the MLP is linear in dff, and MoE is linear in G

(Fig. F.5) and K. For the same number of parameters (except for the selection
network, which is negligible), dmodel = G · NE. However, both the memory
usage and the execution time of the MoE are almost independent of NE, except
for a small linear factor due to the selection network (see Fig. 7.2). Figures 7.2,
F.5 and F.6 shows the actual measured execution time and memory usage on a
RTX 3090 GPU.

F.2 Implementation Details

We train all of our models for 100k steps with cosine learning rate decay, starting
from the initial learning rate of 0.00025 and decaying to 0. We use the Adam
optimizer [Kingma and Ba, 2015] with default PyTorch parameters [Paszke et al.,
2019]. We use gradient clipping with a max gradient norm of 0.25. We show
the other hyperparameters of our dense models in Tab. F.2. We train our models
with an XL memory of the same size as the context size. However, following
Dai et al. [2019], we evaluate the models using a longer memory. Unlike the
hyperparameter-tuned memory sizes in Transformer XL, we use 4 times the con-
text size (this approximates the size of the memory by Dai et al. [2019], while
being simple).

The hyperparameters of the MoE models match those of their dense coun-
terparts with the same number of parameters, except for the MoE-specific ones,



185 F.2 Implementation Details

1 5 9 13
Expert (used with)

1

5

9

13
E

xp
er

t(
ta

rg
et

)

0.00

0.05

0.10

0.15

0.20

Figure F.3: Expert co-occurrence in a σ-MoE model with NE = 16 experts and
K = 4. Each row shows the distribution of experts used together with the one
corresponding to the row. Measured on the validation set of Wikitext-103 in
the 3rd layer of our 47M σ-MoE model. The other layers and models behave
qualitatively the same.

which are shown in Tab. F.3. δ denotes the expert dropout and γ denotes the
regularization strength used for the loss L (See Eq. 7.20). For the non-MoE lay-
ers, the same dropout is used as for the baselines. For Switch Transformers, we
use γ = 0.01 with regularization of the form presented in Eq. 7.16, following
Fedus et al. [2022]. The other variants, including S-BASE, use the regularizer
proposed by us (Eq. 7.20).

Our small PKM models use 46 subkeys resulting in 462 = 2116 values for
the dff-matched case and 62 subkeys (3844 values) for the parameter-matched
case. The PKM equivalent of the 262M parameter model on Wikitext-103 has
64 subkeys (4096 values) for the dff-matched and 89 subkeys (7921 values) for
the parameter-matched case. The PKM models do not use dropout in the PKM
layers, and have 4 heads.

F.2.1 A Few Words on the CUDA Kernel

We call the key operation for our MoE layers conditional vector-matrix multi-
plication, or CVMM, and we define it as follows. Given a batch of vectors,
V ∈ RN×M , where N is the batch size and M is the number of channels, a
set of K matrices M ∈ RK×M×L and selection indices S ∈ {0, ..., K − 1}N ,



186 F.2 Implementation Details

CVMM(V ,S,M ) ∈ RN×L is:

CVMM(V ,S,M )[n, l] =
M−1∑
m=0

V [n,m]M [S[n],m, l]

Our CUDA kernel is based on the blog post developing a matrix multiplica-
tion kernel by Simon Boehm (https://siboehm.com/articles/22/CUDA-MMM).
However, there are major differences: unlike standard matrix multiplication, in
our case, different matrices could be used for different batch elements of the in-
put. In order to be able to reuse matrices fetched from the global memory of the
GPU, we first do a preprocessing step: we sort the selection indices, and obtain
a reordering vector. This gives us an ordering of the input and output batch ele-
ments, such that the consecutive indices are multiplied by the same matrix with
high probability. Fortunately, multiple channels have to be fetched/written out
at once, so this reordering has minimal overhead. Our kernel has an additional
grid dimension compared to standard matrix multiplication, iterating over the
matrix index, k ∈ {0, ..., K − 1}. We find that skipping matrices that do not
have any corresponding inputs has minimal overhead. To avoid checking all
elements of the reordering vector, we precompute their offsets.

Our kernel uses shared memory and register caching; however, it does not
use asynchronous loads, which makes it I/O bound. It also does not support
tensor cores and mixed precision. The pre-processing step uses the radix sort
from the CUB library. However, computing the offsets requires counting the
number of vectors assigned to a single matrix. This information, as well as the
offset, which is their sum, are freely available as sub-results that the radix sort
computes anyways; however, we found no way of extracting it from the CUB
implementation. We estimate that by implementing a more efficient preprocess-
ing step, asynchronous loads, and tensor core support, our kernel can be further
accelerated by a factor of two.

F.2.2 Additional Results on MoEs

Additional results of different MoE variants with more model details are shown
in Tab. F.4. We repeat the entries from Tab. 7.4 for easier comparison.

https://siboehm.com/articles/22/CUDA-MMM


187 F.2 Implementation Details

0 16 32 48 64 80 96 112
10−6

10−5

10−4

10−3

10−2

10−1

S
el

ec
tio

n
pr

op
or

tio
n

Layer 0

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−6

10−5

10−4

10−3

10−2

10−1

Layer 1

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−5

10−4

10−3

10−2

10−1

S
el

ec
tio

n
pr

op
or

tio
n

Layer 2

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112
10−7

10−6

10−5

10−4

10−3

10−2

10−1

Layer 3

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−5

10−4

10−3

10−2

10−1

S
el

ec
tio

n
pr

op
or

tio
n

Layer 4

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−7

10−6

10−5

10−4

10−3

10−2

10−1

Layer 5

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−5

10−4

10−3

10−2

10−1

S
el

ec
tio

n
pr

op
or

tio
n

Layer 6

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−6

10−5

10−4

10−3

10−2

10−1

Layer 7

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−7

10−5

10−3

10−1

S
el

ec
tio

n
pr

op
or

tio
n

Layer 8

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−6

10−5

10−4

10−3

10−2

10−1

Layer 9

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−5

10−4

10−3

10−2

10−1

S
el

ec
tio

n
pr

op
or

tio
n

Layer 10

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112
10−5

10−4

10−3

10−2

10−1

Layer 11

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112
10−7

10−6

10−5

10−4

10−3

10−2

10−1

S
el

ec
tio

n
pr

op
or

tio
n

Layer 12

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112

10−5

10−4

10−3

10−2

10−1

Layer 13

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112
Expert

10−5

10−4

10−3

10−2

10−1

S
el

ec
tio

n
pr

op
or

tio
n

Layer 14

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

0 16 32 48 64 80 96 112
Expert

10−6

10−5

10−4

10−3

10−2

10−1

Layer 15

σ-MoE
σ-MoE - softmax (no renorm.)
σ-MoE - softmax (renorm.)
Switch Transformer
S-BASE (K=4, G=128)

Figure F.4: The total proportion of selection weights assigned to a given expert
(indicated on the x-axis) on the validation set of Wikitext-103 with our WT-S*
model from Tab. F.4. Experts are sorted by their popularity. All layers are
shown. The models with a big performance gap can be distinguished easily
(Switch Transformer and σ-MoE with a softmax and renormalization, “softmax
(renom.)”). Their performance gap can be at least partially attributed to expert
collapse. However, it seems to be difficult to distinguish the fine performance
difference between the rest of the models based solely on the expert collapse
phenomenon.



188 F.2 Implementation Details

64 256 512 1024
Expert size (G)

0

100

200

300

Ti
m

e
(m

s)

MLP
MoE

0

2

4

M
em

or
y

(G
B

)MLP
MoE

Figure F.5: Measured execution time and memory usage of a forward-backward
pass of a single MLP and MoE layer. |B| = 32768, corresponding to the realistic
scenario of a batch size 64 and sequence length 512, dmodel = 512, K = 4,
NE = 32 and dff = G ·NE. Full lines show the execution time, and dashed ones
the memory consumption. Because they are both linear with similar slopes,
they are almost indistinguishable. Even with our suboptimal CUDA kernel, the
wall-clock time is faster starting from 16 experts.

128 512 1024 2048
dmodel

0

50

100

150

Ti
m

e
(m

s)

MLP
MoE

0.2

0.4

0.6

M
em

or
y

(G
B

)MLP
MoE

Figure F.6: Measured execution time and memory usage of a forward-backward
pass of a single MLP and MoE layer. |B| = 32768, corresponding to the realistic
scenario of a batch size 64 and sequence length 512, K = 4, NE = 32, G = 128

and dff = G · NE. Full lines show the execution time, and dashed ones the
memory consumption. Even with our suboptimal CUDA kernel, the wall-clock
time is faster starting from 16 experts.



189 F.2 Implementation Details

D
at
as

et
#p

ar
am

s
d
m

od
el

d
ff

n
la
ye

rs
n

he
ad

s
h.

s.
c.
s.

b.
s.

dr
op

ou
t

lr
w
ar

m
.

W
ik
ite

xt
-1

03
47

M
41

2
20

53
16

10
41

25
6

64
0.

1
-

W
ik
ite

xt
-1

03
23

8M
41

2
16

48
0

16
10

41
25

6
64

0.
1

-
W

ik
ite

xt
-1

03
26

2M
10

24
41

10
18

16
64

51
2

64
0.

2
40

00
En

w
ik
8

41
M

51
2

20
53

12
8

64
51

2
32

0.
1

-

Ta
bl

e
F.

2:
H
yp

er
pa

ra
m

et
er

s
of

de
ns

e
ba

se
lin

es
an

d
th

ei
r
M

oE
co

un
te
rp

ar
ts
.

Fo
r
th

e
M

oE
-s
pe

ci
fic

hy
pe

rp
ar

am
et
er

s,
pl

ea
se

re
fe
rt

o
Ta

b.
F.
3.

”h
.s
.”

is
th

e
he

ad
si
ze

,”
c.
s.
”
is

th
e
co

nt
ex

ts
iz
e,

”b
.s
”
is

th
e
ba

tc
h

si
ze

,”
lr

w
ar

m
.”

is
th

e
le
ar

ni
ng

ra
te

w
ar

m
up

.



190 F.2 Implementation Details

Dataset #params dmodel NE G K δ γ

Wikitext-103 47M 412 16 128 4 - 0.001
Wikitext-103 237M 412 128 128 4 0.05 0.001
Wikitext-103 262M 1024 32 128 4 0.2 0.001
Enwik8 41M 512 16 128 4 0.05 0.0001

Table F.3: MoE-specific hyperparameters for different model variants. γ denotes
the scaler for the load balancing term in the loss and δ is the probability of
the expert dropout. The standard, transformer-specific hyperparameters are the
same as for the baselines. Please refer to Tab. F.2.



191 F.2 Implementation Details

Variant WT-S WT-S* WT-B E8
dmodel 412 412 1024 512
# params 47M 237M 262M 41M

G K

σ-MoE (ours) 128 4 11.59 10.37 9.44 1.08
standard dropout 128 4 12.01 10.27 9.53 1.08
softmax (after top-k) 128 4 11.89 11.27 9.58 1.09
softmax (before top-k) 128 4 12.05 10.54 9.62 1.09
standard init 128 4 11.80 10.59 9.67 1.08
no reg (γ = 0, δ = 0) 128 4 11.83 10.41 9.51 1.08
K = 8, G = 64 64 8 11.63 10.30 9.58 1.08
K = 2, G = 256 256 2 11.84 10.44 9.56 1.09
K = 1, G = 512 512 1 11.90 10.83 9.58 1.09
N ′

E = 2NE , G = 64 64 4 11.81 10.53 - 1.08
K = 1 128 1 12.26 11.30 - 1.09
K = 2 128 2 11.90 10.66 - 1.09
K = 8 128 8 11.58 10.22 - 1.08

Switch, K = 1, G = 512 512 1 12.27 11.24 9.68 1.08
no dropout 512 1 11.88 11.10 9.77 1.10
K = 4, G = 128 128 4 12.05 11.37 - 1.10
K = 1, G = 128 128 1 12.61 11.89 - 1.11

no dropout 128 1 12.35 11.78 - 1.10

S-BASE, K = 4, G = 128 128 4 13.01 10.96 10.50 1.17
K = 1, G = 512 512 1 12.32 11.31 9.77 1.32

Table F.4: Detailed ablation results. WT-S* is obtained by naively scaling NE in
WT-S. More details in Sec. 7.5.3. We do not evaluate all versions of the 262M
Wikitext-103 model due to its long training time. However, we aim to include
what we believe are the most interesting variants. γ = 0means no regularization
applied to the selection scores (See Eq. 7.20), δ = 0 denotes no expert dropout.



Bibliography

Ekin Akyürek and Jacob Andreas. Lexicon learning for few-shot neural
sequence modeling. In Proc. Association for Computational Linguistics
(ACL), Virtual only, August 2021.

Ekin Akyürek and Jacob Andreas. Compositionality as lexical symmetry.
Preprint arXiv:2201.12926, 2022.

Guillaume Alain and Yoshua Bengio. Understanding intermediate layers using
linear classifier probes. In ICLR, Workshop, Toulon, France, April 2017.
OpenReview.net.

Shun-ichi Amari. A theory of adaptive pattern classifiers. IEEE Trans. Electron.
Comput., 16(3):299–307, 1967.

Shun-ichi Amari. Learning patterns and pattern sequences by self-organizing
nets of threshold elements. IEEE Trans. Computers, 21(11):1197–1206,
1972.

Jacob Andreas. Good-enough compositional data augmentation. In Proc.
Association for Computational Linguistics (ACL), pages 7556–7566, Virtual
only, July 2020.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural
module networks. In Proc. The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Las Vegas, USA, June 2016.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra,
Vinay V. Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam
Neyshabur. Exploring length generalization in large language models. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), New
Orleans, LA, USA, December 2022.

192



193 Bibliography

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.
Preprint arXiv:1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate. In Int. Conf. on Learning
Representations (ICLR), San Diego, CA, USA, May 2015.

Dzmitry Bahdanau, Harm de Vries, Timothy J O’Donnell, Shikhar Murty,
Philippe Beaudoin, Yoshua Bengio, and Aaron Courville. CLOSURE:
Assessing systematic generalization of CLEVR models. In ViGIL workshop,
NeurIPS, Vancouver, Canada, December 2019a.

Dzmitry Bahdanau, Shikhar Murty, Michael Noukhovitch, Thien Huu Nguyen,
Harm de Vries, and Aaron Courville. Systematic generalization: What is
required and can it be learned? In Int. Conf. on Learning Representations
(ICLR), New Orleans, LA, USA, May 2019b.

Pierre Baldi and Yves Chauvin. Hybrid modeling, HMM/NN architectures, and
protein applications. Neural Computation, 8(7):1541–1565, 1996.

Andrea Banino, Jan Balaguer, and Charles Blundell. PonderNet: Learning to
ponder. Preprint arXiv:2107.05407, 2021.

Horace B Barlow, Tej P Kaushal, and Graeme J Mitchison. Finding minimum
entropy codes. Neural Computation, 1(3):412–423, 1989.

Anthony Bau and Jacob Andreas. How do neural sequence models generalize?
local and global context cues for out-of-distribution prediction. Preprint
arXiv:2111.03108, 2021.

Itamar Ben-Ari and Alan Joseph Bekker. Differentiable memory allocation
mechanism for neural computing. MLSLP, 2017.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira,
and Jennifer Wortman Vaughan. A theory of learning from different
domains. Machine Learning, 79(1-2):151–175, 2010.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup.
Conditional computation in neural networks for faster models. Preprint
arXiv:1511.06297, 2015.



194 Bibliography

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston.
Curriculum learning. In Proc. Int. Conf. on Machine Learning (ICML), page
41–48, Montreal, Quebec, Canada, June 2009.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. IEEE transactions on pattern analysis and
machine intelligence, 35(8):1798–1828, 2013a.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or
propagating gradients through stochastic neurons for conditional
computation. CoRR, 2013b.

John Blitzer, Ryan T. McDonald, and Fernando Pereira. Domain adaptation
with structural correspondence learning. In Proc. Conf. on Empirical
Methods in Natural Language Processing (EMNLP), pages 120–128, Sydney,
Australia, July 2006.

Ben Bogin, Shivanshu Gupta, and Jonathan Berant. Unobserved local
structures make compositional generalization hard. Preprint
arXiv:2201.05899, 2022.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre
Vandergheynst. Geometric deep learning: Going beyond euclidean data.
IEEE Signal Process. Mag., 34(4):18–42, 2017.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic.
Geometric deep learning: Grids, groups, graphs, geodesics, and gauges.
Preprint arXiv:2104.13478, 2021.

Ethan A. Brooks, Janarthanan Rajendran, Richard L. Lewis, and Satinder Singh.
Reinforcement learning of implicit and explicit control flow instructions. In
Proc. Int. Conf. on Machine Learning (ICML), pages 1082–1091, Virtual
only, July 2021.

Tom B Brown et al. Language models are few-shot learners. In Proc. Advances
in Neural Information Processing Systems (NeurIPS), Virtual only, December
2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric
Horvitz, Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott M. Lundberg,
Harsha Nori, Hamid Palangi, Marco Túlio Ribeiro, and Yi Zhang. Sparks of
artificial general intelligence: Early experiments with GPT-4. Preprint
arXiv:2303.12712, 2023.



195 Bibliography

Rahma Chaabouni, Roberto Dessì, and Eugene Kharitonov. Can transformers
jump around right in natural language? Assessing performance transfer from
SCAN. Preprint arXiv:2107.01366, 2021.

Michael Chang, Abhishek Gupta, Sergey Levine, and Thomas L. Griffiths.
Automatically composing representation transformations as a means for
generalization. In Int. Conf. on Learning Representations (ICLR), New
Orleans, USA, May 2019.

Francois Charton, Amaury Hayat, and Guillaume Lample. Learning advanced
mathematical computations from examples. In Int. Conf. on Learning
Representations (ICLR), Virtual only, May 2021.

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando
Solar-Lezama, and Yisong Yue. Neurosymbolic programming. Foundations
and Trends in Programing Languages, 7(3):158–243, December 2021.

Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song, and Denny Zhou.
Compositional generalization via neural-symbolic stack machines. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), Virtual only,
December 2020.

Jianpeng Cheng, Li Dong, and Mirella Lapata. Long short-term
memory-networks for machine reading. In Proc. Conf. on Empirical
Methods in Natural Language Processing (EMNLP), pages 551–561, Austin,
TX, USA, November 2016.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra,
Saksham Singhal, Payal Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and
Furu Wei. On the representation collapse of sparse mixture of experts. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), New
Orleans, Louisiana, USA, December 2022.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang,
Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. Vicuna: An open-source chatbot impressing GPT-4
with 90%* ChatGPT quality, March 2023. URL
https://lmsys.org/blog/2023-03-30-vicuna/.

N. Chomsky. Explanatory Models in Linguistics. 1962.

https://lmsys.org/blog/2023-03-30-vicuna/


196 Bibliography

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou
Song, Andreea Gane, Tamás Sarlós, Peter Hawkins, Jared Quincy Davis,
Afroz Mohiuddin, Lukasz Kaiser, David Benjamin Belanger, Lucy J. Colwell,
and Adrian Weller. Rethinking attention with performers. In Int. Conf. on
Learning Representations (ICLR), Virtual only, May 2021.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. PaLM: Scaling language modeling with
pathways. Preprint arXiv:2204.02311, 2022.

Jishnu Ray Chowdhury and Cornelia Caragea. Modeling hierarchical structures
with continuous recursive neural networks. In Proc. Int. Conf. on Machine
Learning (ICML), pages 1975–1988, Virtual only, July 2021.

Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep
neural networks for image classification. In Proc. The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 3642–3649,
Providence, RI, USA, June 2012.

Aidan Clark, Diego de Las Casas, Aurelia Guy, Arthur Mensch, Michela
Paganini, Jordan Hoffmann, Bogdan Damoc, Blake A. Hechtman, Trevor Cai,
Sebastian Borgeaud, George van den Driessche, Eliza Rutherford, Tom
Hennigan, Matthew Johnson, Katie Millican, Albin Cassirer, Chris Jones,
Elena Buchatskaya, David Budden, Laurent Sifre, Simon Osindero, Oriol
Vinyals, Jack W. Rae, Erich Elsen, Koray Kavukcuoglu, and Karen Simonyan.
Unified scaling laws for routed language models. Preprint arXiv:2202.01169,
2022.

Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson. The evolutionary origins of
modularity. Proceedings of the Royal Society B: Biological Sciences, 280,
2013.

Jeff Clune, Jean-Baptiste Mouret, and Hod Lipson. Summary of ”the
evolutionary origins of modularity”. In Proc. Int. Conf. on the Simulation
and Synthesis of Living Systems (ALIFE), pages 41–42, New York, NY, USA,
July 2014.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan Titov. Meta-learning to
compositionally generalize. In Proc. of Annual Meeting of the Association
for Computational Linguistics and the International Joint Conf. on Natural



197 Bibliography

Language Processing, ACL-IJCNLP, pages 3322–3335, Virtual only, August
2021a.

Henry Conklin, Bailin Wang, Kenny Smith, and Ivan Titov. Meta-learning to
compositionally generalize. In Proc. of Annual Meeting of the Association
for Computational Linguistics and the International Joint Conf. on Natural
Language Processing, ACL-IJCNLP, pages 3322–3335, August 2021b.

Róbert Csordás and Jürgen Schmidhuber. Improving Differentiable Neural
Computers through memory masking, de-allocation, and link distribution
sharpness control. In Int. Conf. on Learning Representations (ICLR), New
Orleans, LA, USA, May 2019.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The devil is in the detail:
Simple tricks improve systematic generalization of Transformers. In Proc.
Conf. on Empirical Methods in Natural Language Processing (EMNLP), Punta
Cana, Dominican Republic, November 2021.

Róbert Csordás, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Are neural
nets modular? inspecting functional modularity through differentiable
weight masks. In Int. Conf. on Learning Representations (ICLR), Virtual only,
May 2021.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. The neural data router:
Adaptive control flow in transformers improves systematic generalization. In
Int. Conf. on Learning Representations (ICLR), Virtual only, April 2022a.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. CTL++: Evaluating
generalization on never-seen compositional patterns of known functions,
and compatibility of neural representations. In Proc. Conf. on Empirical
Methods in Natural Language Processing (EMNLP), Abu Dhabi, United Arab
Emirates, December 2022b.

Róbert Csordás, Kazuki Irie, and Jürgen Schmidhuber. Approximating
two-layer feedforward networks for efficient transformers. Preprint
https://openreview.net/forum?id=Gq_fdudbb9, 2023.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and
Ruslan Salakhutdinov. Transformer-XL: Attentive language models beyond a
fixed-length context. In Proc. Association for Computational Linguistics
(ACL), pages 2978–2988, Florence, Italy, 2019.

https://openreview.net/forum?id=Gq_fdudbb9


198 Bibliography

Verna Dankers, Elia Bruni, and Dieuwke Hupkes. The paradox of the
compositionality of natural language: a neural machine translation case
study. Preprint arXiv:2108.05885, August 2021.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.
FlashAttention: Fast and memory-efficient exact attention with
IO-awareness. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), New Orleans, Louisiana, USA, December 2022.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language
modeling with gated convolutional networks. In Proc. Int. Conf. on Machine
Learning (ICML), pages 933–941, Sydney, Australia, August 2017.

Brian Davis, Umang Bhatt, Kartikeya Bhardwaj, Radu Marculescu, and José MF
Moura. On network science and mutual information for explaining deep
neural networks. In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 8399–8403, Barcelona, Spain, May 2020.

Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,
Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki,
Diego de Las Casas, et al. Magnetic control of tokamak plasmas through
deep reinforcement learning. Nature, 602(7897):414–419, 2022.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and
Lukasz Kaiser. Universal Transformers. In Int. Conf. on Learning
Representations (ICLR), New Orleans, LA, USA, May 2019.

Xiang Deng and Zhongfei (Mark) Zhang. Is the meta-learning idea able to
improve the generalization of deep neural networks on the standard
supervised learning? In International Conference on Pattern Recognition,
ICPR 2020, Virtual Event / Milan, Italy, January 10-15, 2021, pages 150–157,
Virtual only, January 2020.

Roberto Dessì and Marco Baroni. CNNs found to jump around more skillfully
than RNNs: Compositional generalization in seq2seq convolutional
networks. In Proc. Association for Computational Linguistics (ACL), pages
3919–3923, Florence, Italy, July 2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8():
8-bit matrix multiplication for transformers at scale. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), New Orleans, Louisiana,
USA, December 2022.



199 Bibliography

Yves Deville and Kung-Kiu Lau. Logic program synthesis. The Journal of Logic
Programming, 19:321–350, 1994.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional Transformers for language understanding.
In Proc. North American Chapter of the Association for Computational
Linguistics on Human Language Technologies (NAACL-HLT), pages
4171–4186, Minneapolis, MN, USA, June 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image
is worth 16x16 words: Transformers for image recognition at scale. In Int.
Conf. on Learning Representations (ICLR), Virtual only, May 2021.

Yann Dubois, Gautier Dagan, Dieuwke Hupkes, and Elia Bruni. Location
attention for extrapolation to longer sequences. In Proc. Association for
Computational Linguistics (ACL), pages 403–413, Virtual only, July 2020.

Andrew Dudzik and Petar Velickovic. Graph neural networks are dynamic
programmers. Preprint arXiv:2203.15544, 2022.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang,
Bill Yuchen Lin, Peter West, Chandra Bhagavatula, Ronan Le Bras, Jena D.
Hwang, Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson Ettinger, Zaïd
Harchaoui, and Yejin Choi. Faith and fate: Limits of transformers on
compositionality. Preprint arXiv:2305.18654, abs/2305.18654, 2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom
Henighan, Shauna Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn
Drain, Carol Chen, Roger Grosse, Sam McCandlish, Jared Kaplan, Dario
Amodei, Martin Wattenberg, and Christopher Olah. Toy models of
superposition. Transformer Circuits Thread, 2022.

Kevin Ellis, Catherine Wong, Maxwell I. Nye, Mathias Sablé-Meyer, Lucas
Morales, Luke B. Hewitt, Luc Cary, Armando Solar-Lezama, and Joshua B.
Tenenbaum. DreamCoder: bootstrapping inductive program synthesis with
wake-sleep library learning. In International Conference on Programming
Language Design and Implementation (PLDI), pages 835–850, Virtual only,
2021.



200 Bibliography

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211,
1990.

Jeffrey L. Elman. Learning and development in neural networks: the
importance of starting small. Cognition, 48(1):71–99, 1993.

Enryu. Gpt4 and coding problems. https:
//medium.com/@enryu9000/gpt4-and-coding-problems-8fbf04fa8134,
2023.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling
to trillion parameter models with simple and efficient sparsity. Journal of
Machine Learning Research (JMLR), 23(1):5232–5270, 2022.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha,
Andrei A Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution
channels gradient descent in super neural networks. Preprint
arXiv:1701.08734, August 2017.

Daniel Filan, Shlomi Hod, Cody Wild, Andrew Critch, and Stuart Russell.
Neural networks are surprisingly modular. Preprint arXiv:2003.04881, 2020.

Jerry Fodor and Brian P McLaughlin. Connectionism and the problem of
systematicity: Why Smolensky’s solution doesn’t work. Cognition, 35(2):
183–204, 1990.

Jerry A Fodor, Zenon W Pylyshyn, et al. Connectionism and cognitive
architecture: A critical analysis. Cognition, 28(1-2):3–71, 1988.

Jerry Alan Fodor. The language of thought, volume 5. Harvard university press,
1975.

Jörg Franke, Jan Niehues, and Alex Waibel. Robust and scalable differentiable
neural computer for question answering. Workshop on Machine Reading for
Question Answering (MRQA), ACL, July 2018.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In Int. Conf. on Learning Representations
(ICLR), New Orleans, LA, USA, May 2019.

Karlis Freivalds, Emils Ozolins, and Agris Sostaks. Neural shuffle-exchange
networks - sequence processing in O(n log n) time. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), Vancouver, Canada,
December 2019.

https://medium.com/@enryu9000/gpt4-and-coding-problems-8fbf04fa8134
https://medium.com/@enryu9000/gpt4-and-coding-problems-8fbf04fa8134


201 Bibliography

Robert M French. Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128–135, 1999.

Kunihiko Fukushima. Visual feature extraction by a multilayered network of
analog threshold elements. IEEE Trans. Syst. Sci. Cybern., 5(4):322–333,
1969.

Daniel Furrer, Marc van Zee, Nathan Scales, and Nathanael Schärli.
Compositional generalization in semantic parsing: Pre-training vs.
specialized architectures. Preprint arXiv:2007.08970, 2020.

Adam Gaier and David Ha. Weight agnostic neural networks. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), pages
5365–5379, Vancouver, BC, Canada, December 2019.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn
Presser, and Connor Leahy. The Pile: An 800GB dataset of diverse text for
language modeling. Preprint arXiv:2101.00027, 2021.

Marta Garnelo and Murray Shanahan. Reconciling deep learning with
symbolic artificial intelligence: representing objects and relations. Current
Opinion in Behavioral Sciences, 29:17–23, 2019.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer
feed-forward layers are key-value memories. In Proc. Conf. on Empirical
Methods in Natural Language Processing (EMNLP), pages 5484–5495, Punta
Cana, Dominican Republic, November 2021.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proc. Int. Conf. on Artificial Intelligence
and Statistics (AISTATS), pages 249–256, Sardinia, Italy, May 2010.

Siavash Golkar, Michael Kagan, and Kyunghyun Cho. Continual learning via
neural pruning. In NeurIPS 2019 Workshop Neuro AI, 2019.

Christoph Goller and Andreas Küchler. Learning task-dependent distributed
representations by backpropagation through structure. In Proceedings of
International Conference on Neural Networks (ICNN), pages 347–352,
Washington, USA, 1996.



202 Bibliography

Jonathan Gordon, David Lopez-Paz, Marco Baroni, and Diane Bouchacourt.
Permutation equivariant models for compositional generalization in
language. In Int. Conf. on Learning Representations (ICLR), Addis Ababa,
Ethiopia, April 2020.

Anirudh Goyal, Alex Lamb, Phanideep Gampa, Philippe Beaudoin, Charles
Blundell, Sergey Levine, Yoshua Bengio, and Michael Curtis Mozer.
Factorizing declarative and procedural knowledge in structured, dynamical
environments. In Int. Conf. on Learning Representations (ICLR), Virtual
Only, May 2021a.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine,
Yoshua Bengio, and Bernhard Schölkopf. Recurrent independent
mechanisms. In Int. Conf. on Learning Representations (ICLR), Virtual only,
May 2021b.

Alex Graves. Sequence transduction with recurrent neural networks. In
Workshop on Representation Learning, ICML, Edinburgh, Scotland, June
2012.

Alex Graves. Adaptive computation time for recurrent neural networks. In Int.
Conf. on Learning Representations (ICLR) Workshop Track, Vancouver,
Canada, April 2016.

Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional
LSTM networks for improved phoneme classification and recognition. In
Proc. Int. Conf. on Artificial Neural Networks (ICANN), volume 3697 of
Lecture Notes in Computer Science, pages 799–804, Warsaw, Poland,
September 2005.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines.
Preprint arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka,
Agnieszka Grabska-Barwinska, Sergio Gomez Colmenarejo, Edward
Grefenstette, Tiago Ramalho, John P. Agapiou, Adrià Puigdomènech Badia,
Karl Moritz Hermann, Yori Zwols, Georg Ostrovski, Adam Cain, Helen King,
Christopher Summerfield, Phil Blunsom, Koray Kavukcuoglu, and Demis
Hassabis. Hybrid computing using a neural network with dynamic external
memory. Nature, 538(7626):471–476, 2016.



203 Bibliography

Klaus Greff, Sjoerd van Steenkiste, and Jürgen Schmidhuber. On the binding
problem in artificial neural networks. Preprint arXiv:2012.05208, 2020.

Yinuo Guo, Zeqi Lin, Jian-Guang Lou, and Dongmei Zhang. Hierarchical poset
decoding for compositional generalization in language. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), Virtual only, December
2020.

Stephen José Hanson. A stochastic version of the delta rule. Physica D:
Nonlinear Phenomena, 42(1-3):265–272, 1990.

Babak Hassibi and David G. Stork. Second order derivatives for network
pruning: Optimal brain surgeon. In Proc. Advances in Neural Information
Processing Systems (NIPS), pages 164–171, Denver, Colorado, USA,
November 1992.

John Haugeland. Artificial intelligence: the very idea, 1985.

Serhii Havrylov, Germán Kruszewski, and Armand Joulin. Cooperative learning
of disjoint syntax and semantics. In Proc. North American Chapter of the
Association for Computational Linguistics on Human Language Technologies
(NAACL-HLT), pages 1118–1128, Minneapolis, USA, June 2019.

Horace He.
https://twitter.com/cHHillee/status/1635790330854526981, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proc. IEEE Int. Conf. on Computer Vision (ICCV), pages 1026–1034,
Santiago, Chile, December 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proc. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 770–778, Las Vegas, NV,
USA, June 2016.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine Bordes, and Yann LeCun.
Tracking the world state with recurrent entity networks. In Int. Conf. on
Learning Representations (ICLR), Toulon, France, April 2017.
OpenReview.net.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs).
Preprint arXiv:1606.08415, 2016.

https://twitter.com/cHHillee/status/1635790330854526981


204 Bibliography

Jonathan Herzig and Jonathan Berant. Span-based semantic parsing for
compositional generalization. Preprint arXiv:2009.06040, 2020.

Jonathan Herzig, Peter Shaw, Ming-Wei Chang, Kelvin Guu, Panupong Pasupat,
and Yuan Zhang. Unlocking compositional generalization in pre-trained
models using intermediate representations. Preprint arXiv:2104.07478,
2021.

Irina Higgins, David Amos, David Pfau, Sebastien Racaniere, Loic Matthey,
Danilo Rezende, and Alexander Lerchner. Towards a definition of
disentangled representations. Preprint arXiv:1812.02230, 2018.

Geoffrey Hinton. Neural networks for machine learning. Coursera, video
lectures., 2012.

Geoffrey E Hinton. Distributed representations. Technical report, 1984.

Sepp Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen.
Diploma, Technische Universität München, 91(1):31, 1991.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, pages 1735–1780, 1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya,
Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks,
Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katie Millican,
George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero,
Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models. Preprint
arXiv:2203.15556, April 2022.

John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979. ISBN 0-201-02988-X.

Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims Volkovs. Improving
transformer optimization through better initialization. In Proc. Int. Conf. on
Machine Learning (ICML), pages 4475–4483, Virtual only, July 2020.

Drew A. Hudson and Christopher D. Manning. Compositional attention
networks for machine reasoning. In Int. Conf. on Learning Representations
(ICLR), Vancouver, Canada, April 2018.



205 Bibliography

Dieuwke Hupkes, Sara Veldhoen, and Willem Zuidema. Visualisation and
’diagnostic classifiers’ reveal how recurrent and recursive neural networks
process hierarchical structure. Journal of Artificial Intelligence Research, 61:
907–926, 2018.

Dieuwke Hupkes, Anand Singh, Kris Korrel, German Kruszewski, and Elia
Bruni. Learning compositionally through attentive guidance. In Proc. Int.
Conf. on Computational Linguistics and Intelligent Text Processing, La
Rochelle, France, April 2019.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni.
Compositionality decomposed: How do neural networks generalise?
Journal of Artificial Intelligence Research, pages 757–795, 2020.

DeLesley Hutchins, Imanol Schlag, Yuhuai Wu, Ethan Dyer, and Behnam
Neyshabur. Block-recurrent transformers. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), New Orleans, LA, USA,
December 2022.

Marcus Hutter. A theory of universal artificial intelligence based on
algorithmic complexity. Preprint arXiv:cs/0004001, 2000.

Kazuki Irie. Advancing Neural Language Modeling in Automatic Speech
Recognition. PhD thesis, Computer Science Department, RWTH Aachen
University, Aachen, Germany, May 2020.

Kazuki Irie, Shankar Kumar, Michael Nirschl, and Hank Liao. RADMM:
Recurrent adaptive mixture model with applications to domain robust
language modeling. In Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing (ICASSP), pages 6079–6083, Calgary, Canada, April 2018.

Kazuki Irie, Albert Zeyer, Ralf Schlüter, and Hermann Ney. Language modeling
with deep Transformers. In Proc. Interspeech, pages 3905–3909, Graz,
Austria, September 2019.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Jürgen Schmidhuber. Going
beyond linear Transformers with recurrent fast weight programmers. Preprint
arXiv:2106.06295, 2021.

Kazuki Irie, Róbert Csordás, and Jürgen Schmidhuber. The dual form of neural
networks revisited: Connecting test time predictions to training patterns via
spotlights of attention. In Proc. Int. Conf. on Machine Learning (ICML),
Baltimore, MD, USA, July 2022.



206 Bibliography

E Ising. Beitrag zur Theorie des Ferround Paramagnetismus. PhD thesis, PhD
thesis, PhD thesis (Mathematisch-Naturwissenschaftliche Fakultät der …,
1924.

Alekseĭ Grigorievitch Ivakhnenko and Valentin Grigorévich Lapa. Cybernetic
Predicting Devices. CCM Information Corporation, 1965a.

Aleksey Grigorievitch Ivakhnenko. The group method of data handling – a
rival of the method of stochastic approximation. Soviet Automatic Control,
13(3):43–55, 1968.

Aleksey Grigorievitch Ivakhnenko. Polynomial theory of complex systems.
IEEE Transactions on Systems, Man and Cybernetics, 1(4):364–378, 1971.

Aleksey Grigorievitch Ivakhnenko and Valentin Grigorevich Lapa. Cybernetic
predicting devices. In Information and Control, 1965b.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton.
Adaptive mixtures of local experts. Neural Compututaion, 3(1):79–87, 1991.

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel:
Convergence and generalization in neural networks. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), pages 8580–8589,
Montréal, Canada, December 2018.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparametrization with
gumbel-softmax. In Int. Conf. on Learning Representations (ICLR), Toulon,
France, April 2017.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei,
C. Lawrence Zitnick, and Ross B. Girshick. CLEVR: A diagnostic dataset for
compositional language and elementary visual reasoning. In Proc. The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, July 2017.

Philip N Johnson-Laird, Paolo Legrenzi, and Maria Sonino Legrenzi. Reasoning
and a sense of reality. British journal of Psychology, 63(3):395–400, 1972.

Armand Joulin and Tomás Mikolov. Inferring algorithmic patterns with
stack-augmented recurrent nets. In Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, editors, Proc.
Advances in Neural Information Processing Systems (NeurIPS), pages
190–198, Montreal, Quebec, Canada, December 2015.



207 Bibliography

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, et al. Highly accurate protein structure prediction with
AlphaFold. Nature, 596(7873):583–589, 2021.

Lukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In Int. Conf.
on Learning Representations (ICLR), San Juan, Puerto Rico, May 2016.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret.
Transformers are RNNs: Fast autoregressive transformers with linear
attention. In Proc. Int. Conf. on Machine Learning (ICML), volume 119,
pages 5156–5165, Virtual Only, 2020.

Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):
947–954, 1960.

Daniel Keysers, Nathanael Schärli, Nathan Scales, Hylke Buisman, Daniel
Furrer, Sergii Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang, Marc van Zee, and
Olivier Bousquet. Measuring compositional generalization: A
comprehensive method on realistic data. In Int. Conf. on Learning
Representations (ICLR), Addis Ababa, Ethiopia, 2020.

Eugene Kharitonov and Rahma Chaabouni. What they do when in doubt: a
study of inductive biases in seq2seq learners. In Int. Conf. on Learning
Representations (ICLR), May 2021.

Najoung Kim and Tal Linzen. COGS: A compositional generalization
challenge based on semantic interpretation. In Proc. Conf. on Empirical
Methods in Natural Language Processing (EMNLP), pages 9087–9105,
Virtual only, 2020.

Yoon Kim. Sequence-to-sequence learning with latent neural grammars. Proc.
Advances in Neural Information Processing Systems (NeurIPS), 34,
December 2021.

Yoon Kim and Yacine Jernite David Sontag Alexander Rush. Character-aware
neural language models. In Proc. AAAI Conference on Artificial Intelligence,
Phoenix, AZ, USA, February 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, Int. Conf. on
Learning Representations (ICLR), San Diego, CA, USA, May 2015.



208 Bibliography

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey
of generalisation in deep reinforcement learning. Preprint arXiv:2111.09794,
2021.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A. Rusu, Kieran Milan, John Quan, Tiago Ramalho,
Agnieszka Grabska-Barwinska, Demis Hassabis, Claudia Clopath, Dharshan
Kumaran, and Raia Hadsell. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences, 114(13):
3521–3526, 2017a.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho,
Agnieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114:
3521–3526, 2017b.

Louis Kirsch, Julius Kunze, and David Barber. Modular networks: Learning to
decompose neural computation. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), pages 2408–2418, Montréal, CANADA,
December 2018.

Tim Klinger, Dhaval Adjodah, Vincent Marois, Josh Joseph, Matthew Riemer,
Alex’Sandy’ Pentland, and Murray Campbell. A study of compositional
generalization in neural models. Preprint arXiv:2006.09437, 2020.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin
Zhang, Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga,
Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne David, Ian Stavness,
Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy
Liang. WILDS: A benchmark of in-the-wild distribution shifts. In Proc. Int.
Conf. on Machine Learning (ICML), volume 139, pages 5637–5664, July
2021.

Teuvo Kohonen. Correlation matrix memories. IEEE Trans. Computers, 21(4):
353–359, 1972.

Andrei N Kolmogorov. Three approaches to the quantitative definition of
information’. Problems of information transmission, 1(1):1–7, 1965.



209 Bibliography

Soheil Kolouri, Nicholas Ketz, Xinyun Zou, Jeffrey Krichmar, and Praveen Pilly.
Attention-based structural-plasticity. Preprint arXiv:1903.06070, 2019.

Wouter Kool, Chris J Maddison, and Andriy Mnih. Unbiased gradient
estimation with balanced assignments for mixtures of experts. In I (Still)
Can’t Believe It’s Not Better Workshop, NeurIPS, Virtual Only, 2021.

Kris Korrel, Dieuwke Hupkes, Verna Dankers, and Elia Bruni. Transcoding
compositionally: Using attention to find more generalizable solutions. In
Proc. BlackboxNLP Workshop on Analyzing and Interpreting Neural
Networks for NLP, ACL, pages 1–11, Florence, Italy, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features
from tiny images. Technical report, University of Toronto, 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Proc. Advances in Neural
Information Processing Systems (NIPS), volume 25, Stateline, NV, USA,
December 2012.

Andreas Küchler and Christoph Goller. Inductive learning in symbolic
domains using structure-driven recurrent neural networks. In Advances in
Artificial Intelligence, volume 1137 of Lecture Notes in Computer Science,
pages 183–197, Dresden, Germany, September 1996.

Taku Kudo and John Richardson. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing.
In Proc. Conf. on Empirical Methods in Natural Language Processing
(EMNLP), pages 66–71, Brussels, Belgium, October 2018.

Brenden M Lake. Compositional generalization through meta
sequence-to-sequence learning. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), pages 9788–9798, Vancouver, Canada,
December 2019.

Brenden M. Lake and Marco Baroni. Generalization without systematicity: On
the compositional skills of sequence-to-sequence recurrent networks. In
Proc. Int. Conf. on Machine Learning (ICML), pages 2873–2882, Stockholm,
Sweden, July 2018.

Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum, and Samuel J.
Gershman. Building machines that learn and think like people. Behavioral
and Brain Sciences, 40:e253, 2017.



210 Bibliography

Yair Lakretz, Germán Kruszewski, Theo Desbordes, Dieuwke Hupkes, Stanislas
Dehaene, and Marco Baroni. The emergence of number and syntax units in
LSTM language models. In confNAACL, pages 11–20, Minneapolis, MN,
USA, June 2019. Association for Computational Linguistics.

Guillaume Lample, Alexandre Sablayrolles, Marc’Aurelio Ranzato, Ludovic
Denoyer, and Hervé Jégou. Large memory layers with product keys. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), pages
8546–8557, Vancouver, Canada, December 2019.

Yann LeCun, John S. Denker, and Sara A. Solla. Optimal brain damage. In
Proc. Advances in Neural Information Processing Systems (NIPS), pages
598–605, Denver, Colorado, USA, November 1989.

Yann LeCun, Corinna Cortes, and CJ Burges. MNIST handwritten digit database.
ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Wilhelm Lenz. Beitrag zum verständnis der magnetischen erscheinungen in
festen körpern. Z. Phys., 21:613–615, 1920.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat,
Yanping Huang, Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard:
Scaling giant models with conditional computation and automatic sharding.
In Int. Conf. on Learning Representations (ICLR), Virtual only, May 2021.

Leonid Anatolevich Levin. Universal sequential search problems. Problemy
peredachi informatsii, 9(3):115–116, 1973.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke
Zettlemoyer. BASE layers: Simplifying training of large, sparse models. In
Marina Meila and Tong Zhang, editors, Proc. Int. Conf. on Machine Learning
(ICML), volume 139, pages 6265–6274, Virtual only, July 2021.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk
Michalewski, Vinay V. Ramasesh, Ambrose Slone, Cem Anil, Imanol Schlag,
Theo Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and
Vedant Misra. Solving quantitative reasoning problems with language
models. In Proc. Advances in Neural Information Processing Systems
(NeurIPS), New Orleans, LA, USA, December 2022.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf.
Pruning filters for efficient convnets. In Int. Conf. on Learning
Representations (ICLR), Toulon, France, April 2017.



211 Bibliography

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff,
Noah A Smith, and Luke Zettlemoyer. Branch-train-merge: Embarrassingly
parallel training of expert language models. Preprint arXiv:2208.03306,
2022a.

Yuanpeng Li, Liang Zhao, Jianyu Wang, and Joel Hestness. Compositional
generalization for primitive substitutions. In Proc. Conf. on Empirical
Methods in Natural Language Processing and Int.Joint Conf. on Natural
Language Processing (EMNLP-IJCNLP), pages 4292–4301, Hong Kong,
China, November 2019.

Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser,
Rémi Leblond, Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago,
Thomas Hubert, Peter Choy, Cyprien de Masson d’Autume, Igor Babuschkin,
Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
Competition-level code generation with AlphaCode. Preprint
arXiv:2203.07814, March 2022b.

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang Li, Ankit Singh Rawat,
Sashank J. Reddi, Ke Ye, Felix Chern, Felix Yu, Ruiqi Guo, and Sanjiv Kumar.
The lazy neuron phenomenon: On emergence of activation sparsity in
transformers. In Int. Conf. on Learning Representations (ICLR), Kigali,
Rwanda, May 2023.

Seppo Linnainmaa. The representation of the cumulative rounding error of an
algorithm as a Taylor expansion of the local rounding errors. PhD thesis,
Master’s Thesis, Univ. Helsinki, 1970.

Adam Liska, Germán Kruszewski, and Marco Baroni. Memorize or generalize?
Searching for a compositional RNN in a haystack. In AEGAP Workshop
ICML, Stockholm, Sweden, July 2018.

Chenyao Liu, Shengnan An, Zeqi Lin, Qian Liu, Bei Chen, Jian-Guang Lou,
Lijie Wen, Nanning Zheng, and Dongmei Zhang. Learning algebraic
recombination for compositional generalization. In Proc. of Annual Meeting
of the Association for Computational Linguistics and the International Joint
Conf. on Natural Language Processing, ACL-IJCNLP, pages 1129–1144,
Virtual Only, August 2021.



212 Bibliography

Dianbo Liu, Alex Lamb, Xu Ji, Pascal Notsawo, Mike Mozer, Yoshua Bengio,
and Kenji Kawaguchi. Adaptive discrete communication bottlenecks with
dynamic vector quantization. Preprint arXiv:2202.01334, 2022.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji Zhou, and Yue Zhang.
Evaluating the logical reasoning ability of chatgpt and GPT-4. Preprint
arXiv:2304.03439, 2023.

Qian Liu, Shengnan An, Jian-Guang Lou, Bei Chen, Zeqi Lin, Yan Gao, Bin
Zhou, Nanning Zheng, and Dongmei Zhang. Compositional generalization
by learning analytical expressions. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), Virtual only, December 2020.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In
Int. Conf. on Learning Representations (ICLR), New Orleans, LA, USA, May
2019.

João Loula, Marco Baroni, and Brenden M Lake. Rearranging the familiar:
Testing compositional generalization in recurrent networks. In
BlackboxNLP@ EMNLP, pages 108–114, Brussels, Belgium, November
2018.

Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution:
A continuous relaxation of discrete random variables. In Int. Conf. on
Learning Representations (ICLR), Toulon, France, April 2017.

Arun Mallya and Svetlana Lazebnik. PackNet: Adding multiple tasks to a single
network by iterative pruning. In Proc. The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 7765–7773, Salt Lake City,
USA, ”June” 2018.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a
single network to multiple tasks by learning to mask weights. In Proc.
European Conference on Computer Vision (ECCV), volume 11208, pages
72–88, Munich, Germany, September 2018.

Christoph Von Der Malsburg. The correlation theory of brain function.
Technical Report 81-2, Dept. of Neurobiology, MaxPlanck-Institute for
Biophysical Chemistry, Göttingen, 1981.

Gary F Marcus. Rethinking eliminative connectionism. Cognitive psychology,
pages 243–282, 1998.



213 Bibliography

Gary F Marcus. The algebraic mind: Integrating connectionism and cognitive
science. MIT press, 2003.

Michael McCloskey and Neal J Cohen. Catastrophic interference in
connectionist networks: The sequential learning problem. In Psychology of
learning and motivation, volume 24, pages 109–165. Elsevier, 1989.

Brian P. McLaughlin. Systematicity redux. Synthese, 170(2):251–274, 2009.

Alexander H. Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine
Bordes, and Jason Weston. Key-value memory networks for directly reading
documents. In Proc. Conf. on Empirical Methods in Natural Language
Processing (EMNLP), pages 1400–1409, Austin, Texas, USA, November
2016.

Jovana Mitrovic, Brian McWilliams, Jacob C. Walker, Lars Holger Buesing, and
Charles Blundell. Representation learning via invariant causal mechanisms.
In Int. Conf. on Learning Representations (ICLR), Virtual only, May 2021.

Sarthak Mittal, Alex Lamb, Anirudh Goyal, Vikram Voleti, Murray Shanahan,
Guillaume Lajoie, Michael Mozer, and Yoshua Bengio. Learning to combine
top-down and bottom-up signals in recurrent neural networks with attention
over modules. In Proc. Int. Conf. on Machine Learning (ICML), volume 119,
pages 6972–6986, July 2020.

Sarthak Mittal, Sharath Chandra Raparthy, Irina Rish, Yoshua Bengio, and
Guillaume Lajoie. Compositional attention: Disentangling search and
retrieval. Preprint arXiv:2110.09419, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep
reinforcement learning. In NIPS Deep Learning Workshop, Stateline, NV,
USA, December 2013.

Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Johannes Fürnkranz and Thorsten Joachims, editors,
Proc. Int. Conf. on Machine Learning (ICML), pages 807–814, Haifa, Israel,
June 2010.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and
Ilya Sutskever. Deep double descent: Where bigger models and more data
hurt. In Int. Conf. on Learning Representations (ICLR), Addis Ababa,
Ethiopia, April 2019.



214 Bibliography

Nikita Nangia and Samuel R. Bowman. ListOps: A diagnostic dataset for latent
tree learning. In Proc. North American Chapter of the Association for
Computational Linguistics on Human Language Technologies (NAACL-HLT),
pages 92–99, New Orleans, USA, June 2018.

Allen Newell and Herbert Alexander Simon. GPS, a program that simulates
human thought. 1961.

Allen Newell, John C Shaw, and Herbert A Simon. Report on a general
problem solving program. In IFIP congress, volume 256, page 64, 1959.

Benjamin Newman, John Hewitt, Percy Liang, and Christopher D Manning.
The EOS decision and length extrapolation. In Proc. BlackboxNLP
Workshop on Analyzing and Interpreting Neural Networks for NLP, EMNLP,
pages 276–291, Virtual only, 2020.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. Investigating the limitations
of transformers with simple arithmetic tasks. In ICLR 2021 Mathematical
Reasoning in General Artificial Intelligence Workshop, Virtual only, May
2021.

Nostalgebraist. Chinchilla’s wild implications. https://www.lesswrong.com/
posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications, 2022.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski,
Jacob Austin, David Bieber, David Dohan, Aitor Lewkowycz, Maarten
Bosma, David Luan, Charles Sutton, and Augustus Odena. Show your work:
Scratchpads for intermediate computation with language models. In ICLR
2022 DL4C Workshop, August 2022.

Maxwell I Nye, Armando Solar-Lezama, Joshua B Tenenbaum, and Brenden M
Lake. Learning compositional rules via neural program synthesis. Preprint
arXiv:2003.05562, December 2020.

Santiago Ontañón, Joshua Ainslie, Vaclav Cvicek, and Zachary Fisher. Making
Transformers solve compositional tasks. Preprint arXiv:2108.04378, 2021.

OpenAI. Chatgpt. https://openai.com/blog/chatgpt, 2022.

OpenAI. GPT-4 technical report. Preprint arXiv:2303.08774, 2023.

https://www.lesswrong.com/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications
https://www.lesswrong.com/posts/6Fpvch8RR29qLEWNH/chinchilla-s-wild-implications
https://openai.com/blog/chatgpt


215 Bibliography

Inbar Oren, Jonathan Herzig, Nitish Gupta, Matt Gardner, and Jonathan Berant.
Improving compositional generalization in semantic parsing. In Proc. Conf.
on Empirical Methods in Natural Language Processing (EMNLP), Virtual
only, November 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright,
Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke Miller, Maddie Simens,
Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and Ryan Lowe.
Training language models to follow instructions with human feedback. In
Proc. Advances in Neural Information Processing Systems (NeurIPS), New
Orleans, LA, USA, December 2022.

Peter Pagin and Dag Westerståhl. Compositionality I: Definitions and variants.
Philosophy Compass, 5(3):250–264, 2010.

Ankur P. Parikh, Oscar Täckström, Dipanjan Das, and Jakob Uszkoreit. A
decomposable attention model for natural language inference. In Proc. Conf.
on Empirical Methods in Natural Language Processing (EMNLP), pages
2249–2255, Austin, TX, USA, November 2016.

Emilio Parisotto, H. Francis Song, Jack W. Rae, Razvan Pascanu, Çaglar
Gülçehre, Siddhant M. Jayakumar, Max Jaderberg, Raphaël Lopez Kaufman,
Aidan Clark, Seb Noury, Matthew Botvinick, Nicolas Heess, and Raia
Hadsell. Stabilizing Transformers for reinforcement learning. In Proc. Int.
Conf. on Machine Learning (ICML), volume 119, pages 7487–7498, Virtual
only, July 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style,
high-performance deep learning library. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), pages 8024–8035, Vancouver,
Canada, December 2019.

Judea Pearl. Causality. Cambridge university press, 2009.

Judea Pearl and Dana Mackenzie. The Book of Why: The New Science of
Cause and Effect. Basic Books, Inc., 2018.



216 Bibliography

Gordon Plotkin. Automatic methods of inductive inference. 1972.

Jordan Bruce Pollack. On connectionist models of natural language processing.
PhD dissertation. University of Illinois, 1987.

Senthil Purushwalkam, Maximilian Nickel, Abhinav Gupta, and Marc’Aurelio
Ranzato. Task-driven modular networks for zero-shot compositional learning.
In Proc. IEEE Int. Conf. on Computer Vision (ICCV), pages 3592–3601,
Seoul, South Korea, November 2019.

Zenon Walter Pylyshyn. Computation and cognition. 1984.

Linlu Qiu, Peter Shaw, Panupong Pasupat, Paweł Krzysztof Nowak, Tal Linzen,
Fei Sha, and Kristina Toutanova. Improving compositional generalization
with latent structure and data augmentation. Preprint arXiv:2112.07610,
2021.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

Jack W. Rae, Jonathan J. Hunt, Ivo Danihelka, Timothy Harley, Andrew W.
Senior, Gregory Wayne, Alex Graves, and Tim Lillicrap. Scaling
memory-augmented neural networks with sparse reads and writes. In Proc.
Advances in Neural Information Processing Systems (NIPS), pages
3621–3629, Barcelona, Spain, December 2016.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann,
H. Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah
Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer,
Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth
Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri,
Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia
Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant M. Jayakumar,
Elena Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan,
Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna
Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki
Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli,
Nikolai Grigorev, Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby
Pohlen, Zhitao Gong, Daniel Toyama, Cyprien de Masson d’Autume, Yujia
Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew J. Johnson,



217 Bibliography

Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Edward
Lockhart, Simon Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem
Ayoub, Jeff Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu,
and Geoffrey Irving. Scaling language models: Methods, analysis & insights
from training Gopher. Preprint arXiv:2112.11446, 2021.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann,
H. Francis Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah
Young, Eliza Rutherford, Tom Hennigan, Jacob Menick, Albin Cassirer,
Richard Powell, George van den Driessche, Lisa Anne Hendricks, Maribeth
Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth Dathathri,
Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia
Creswell, Nat McAleese, Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena
Buchatskaya, David Budden, Esme Sutherland, Karen Simonyan, Michela
Paganini, Laurent Sifre, Lena Martens, Xiang Lorraine Li, Adhiguna Kuncoro,
Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Angeliki Lazaridou,
Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev,
Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong,
Daniel Toyama, Cyprien de Masson d’Autume, Yujia Li, Tayfun Terzi,
Vladimir Mikulik, Igor Babuschkin, Aidan Clark, Diego de Las Casas, Aurelia
Guy, Chris Jones, James Bradbury, Matthew Johnson, Blake A. Hechtman,
Laura Weidinger, Iason Gabriel, William S. Isaac, Edward Lockhart, Simon
Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff
Stanway, Lorrayne Bennett, Demis Hassabis, Koray Kavukcuoglu, and
Geoffrey Irving. Scaling language models: Methods, analysis & insights from
training gopher. Preprint arXiv:2112.11446, January 2022.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits of
transfer learning with a unified text-to-text transformer. Journal of Machine
Learning Research (JMLR), 21:140:1–140:67, 2020.

Mark Ring. Incremental development of complex behaviors through automatic
construction of sensory-motor hierarchies. In Machine Learning Proceedings,
pages 343–347, San Francisco, USA, 1991. ISBN 978-1-55860-200-7.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):
465–471, 1978.

Rebecca Roelofs. Measuring Generalization and overfitting in Machine
learning. PhD thesis, UC Berkeley, 2019.



218 Bibliography

Fabio Roli, Sebastiano B. Serpico, and Gianni Vernazza. Image recognition by
integration of connectionist and symbolic approaches. Int. Journal of Pattern
Recognition and Artificial Intelligence (IJPRAI), 9(3):485–515, 1995.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger.
Routing networks and the challenges of modular and compositional
computation. Preprint arXiv:1904.12774, 2019.

Laura Ruis and Brenden Lake. Improving systematic generalization through
modularity and augmentation. Preprint arXiv:2202.10745, 2022.

Luana Ruiz, Joshua Ainslie, and Santiago Ontañón. Iterative decoding for
compositional generalization in transformers. Preprint arXiv:2110.04169,
2021.

Jake Russin, Jason Jo, Randall C O’Reilly, and Yoshua Bengio. Compositional
generalization in a deep seq2seq model by separating syntax and semantics.
Preprint arXiv:1904.09708, 2019.

Adam Santoro, David Raposo, David G. T. Barrett, Mateusz Malinowski,
Razvan Pascanu, Peter W. Battaglia, and Tim Lillicrap. A simple neural
network module for relational reasoning. In Proc. Advances in Neural
Information Processing Systems (NIPS), Long Beach, CA, USA, December
2017.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro, Miloš Stanojević, Phil
Blunsom, and Chris Dyer. Transformer grammars: Augmenting transformer
language models with syntactic inductive biases at scale. Preprint
arXiv:2203.00633, 2022.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing
mathematical reasoning abilities of neural models. In Int. Conf. on Learning
Representations (ICLR), New Orleans, LA, USA, May 2019.

Imanol Schlag and Jürgen Schmidhuber. Learning to reason with third order
tensor products. Advances in neural information processing systems, 31,
2018.

Imanol Schlag, Paul Smolensky, Roland Fernandez, Nebojsa Jojic, Jürgen
Schmidhuber, and Jianfeng Gao. Enhancing the transformer with explicit
relational encoding for math problem solving. Preprint arXiv:1910.06611,
2019.



219 Bibliography

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are
secretly fast weight programmers. In Proc. Int. Conf. on Machine Learning
(ICML), volume 139, pages 9355–9366, Virtual only, 2021.

Jeffrey C. Schlimmer and Douglas H. Fisher. A case study of incremental
concept induction. In Proceedings of the 5th National Conference on
Artificial Intelligence, pages 496–501, Philadelphia, USA, August 1986.

J. Schmidhuber. Evolutionary principles in self-referential learning, or on
learning how to learn: the meta-meta-... hook. Diploma thesis, Inst. f. Inf.,
Tech. Univ. Munich, 1987.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative
to recurrent nets. Technical Report FKI-147-91, Institut für Informatik,
Technische Universität München, March 1991.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative
to recurrent nets. Neural Computation, 4(1):131–139, 1992a.

Jürgen Schmidhuber. Learning factorial codes by predictability minimization.
Neural computation, 4(6):863–879, 1992b.

Jürgen Schmidhuber. Learning to control fast-weight memories: An alternative
to dynamic recurrent networks. Neural Computation, 4(1):131–139, 1992c.

Jürgen Schmidhuber. On decreasing the ratio between learning complexity
and number of time-varying variables in fully recurrent nets. In Proceedings
of the International Conference on Artificial Neural Networks, Amsterdam,
pages 460–463. Springer, 1993.

Jürgen Schmidhuber. Self-delimiting neural networks. Preprint
arXiv:1210.0118, 2012.

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, 2015.

Jürgen Schmidhuber. Annotated history of modern AI and deep learning.
Preprint arXiv:2212.11279, December 2022.

Jürgen Schmidhuber. Learning complex, extended sequences using the
principle of history compression. Neural Computation, 4(2):234–242,
1992d.



220 Bibliography

Jürgen Schmidhuber. Optimal ordered problem solver. Machine Learning, 54:
211–254, 2004.

Bernhard Schölkopf. Causality for machine learning. Preprint
arXiv:1911.10500, December 2019.

Avi Schwarzschild, Eitan Borgnia, Arjun Gupta, Furong Huang, Uzi Vishkin,
Micah Goldblum, and Tom Goldstein. Can you learn an algorithm?
generalizing from easy to hard problems with recurrent networks. In Proc.
Advances in Neural Information Processing Systems (NeurIPS), Virtual only,
December 2021.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine
translation of rare words with subword units. In Proc. Association for
Computational Linguistics (ACL), pages 1715–1725, Berlin, Germany,
August 2016.

Ehud Y. Shapiro. The model inference system. In Patrick J. Hayes, editor,
International Joint Conference on Artificial Intelligence, IJCAI, page 1064,
Vancouver, BC, Canada, August 1981. William Kaufmann.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative
position representations. In Proc. North American Chapter of the
Association for Computational Linguistics on Human Language Technologies
(NAACL-HLT), pages 464–468, New Orleans, Louisiana, USA, June 2018a.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative
position representations. In Proc. North American Chapter of the
Association for Computational Linguistics on Human Language Technologies
(NAACL-HLT), pages 464–468, New Orleans, Louisiana, USA, June 2018b.

Peter Shaw, Ming-Wei Chang, Panupong Pasupat, and Kristina Toutanova.
Compositional generalization and natural language variation: Can a
semantic parsing approach handle both? In Proc. Association for
Computational Linguistics (ACL), Virtual only, August 2021.

Noam Shazeer. GLU variants improve transformer. Preprint arXiv:2002.05202,
2020.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le,
Geoffrey Hinton, and Jeff Dean. Outrageously large neural networks: The
sparsely-gated mixture-of-experts layer. In Int. Conf. on Learning
Representations (ICLR), Toulon, France, April 2017.



221 Bibliography

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang, Rui Wang, and Jiang Bian. A
study on ReLU and softmax in transformer. Preprint arXiv:2302.06461,
2023.

Yikang Shen, Shawn Tan, Seyed Arian Hosseini, Zhouhan Lin, Alessandro
Sordoni, and Aaron C. Courville. Ordered memory. In Proc. Advances in
Neural Information Processing Systems (NeurIPS), pages 5038–5049,
Vancouver, Canada, December 2019.

Edward H Shortliffe and Bruce G Buchanan. A model of inexact reasoning in
medicine. Mathematical biosciences, 23(3-4):351–379, 1975.

Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important
features through propagating activation differences. In Proc. Int. Conf. on
Machine Learning (ICML), volume 70, pages 3145–3153, Sydney, Australia,
August 2017.

Hava T Siegelmann and Eduardo D Sontag. Turing computability with neural
nets. Applied Mathematics Letters, 4(6):77–80, 1991.

Hava T. Siegelmann and Eduardo D. Sontag. On the computational power of
neural nets. Journal of Computer and System Sciences, 50(1):132–150,
1995.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016a.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou,
Vedavyas Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis.
Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016b.



222 Bibliography

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. Preprint arXiv:1312.6034, 2013.

Richard Sinkhorn. A relationship between arbitrary positive matrices and
doubly stochastic matrices. The annals of mathematical statistics, 35(2):
876–879, 1964.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and
doubly stochastic matrices. Pacific Journal of Mathematics, 21(2):343–348,
1967.

Ray Solomonoff. A formal theory of inductive inference. part I. Information
and Control, 7(1):1–22, 1964a.

Ray Solomonoff. A formal theory of inductive inference. part II. Information
and Control, 7(2):224–254, 1964b.

Alessandro Sperduti. Encoding labeled graphs by labeling RAAM. In Proc.
Advances in Neural Information Processing Systems (NIPS), pages
1125–1132, Denver, Colorado, USA, 1993.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin A.
Riedmiller. Striving for simplicity: The all convolutional net. In Int. Conf. on
Learning Representations (ICLR), Workshop, San Diego, CA, USA, May
2015.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958,
2014.

Rupesh K Srivastava, Klaus Greff, and Jürgen Schmidhuber. Training very deep
networks. In Proc. Advances in Neural Information Processing Systems
(NIPS), pages 2368–2376, Montreal, Canada, December 2015a.

Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. Highway
networks. ICML Deep Learnig Workshop, July 2015b.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly
supervised memory networks. Preprint arXiv:1503.08895, 2015.



223 Bibliography

Ron Sun and Lawrence A Bookman. Computational architectures integrating
neural and symbolic processes: A perspective on the state of the art.
Springer Science & Business Media, 1994.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for
deep networks. In Proc. Int. Conf. on Machine Learning (ICML), volume 70,
pages 3319–3328, Sydney, Australia, 2017.

Gerald J Sussman. A computational model of skill acquisition. 1973.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning
with neural networks. In Proc. Advances in Neural Information Processing
Systems (NIPS), pages 3104–3112, Montréal, Canada, December 2014.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, and Stuart M. Shieber.
Memory-augmented recurrent neural networks can learn generalized dyck
languages. Preprint arXiv:1911.03329, 2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of neural
networks. In Int. Conf. on Learning Representations (ICLR), April 2014.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Stanford Alpaca: An
instruction-following LLaMA model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip
Pham, Jinfeng Rao, Liu Yang, Sebastian Ruder, and Donald Metzler. Long
Range Arena : A benchmark for efficient transformers. In Int. Conf. on
Learning Representations (ICLR), Virtual only, May 2021.

Haoye Tian, Weiqi Lu, Tsz On Li, Xunzhu Tang, Shing-Chi Cheung, Jacques
Klein, and Tegawendé F. Bissyandé. Is ChatGPT the ultimate programming
assistant - how far is it? Preprint arXiv:2304.11938, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, Aurélien Rodriguez, Armand Joulin, Edouard Grave, and
Guillaume Lample. LLaMA: Open and efficient foundation language
models. Preprint arXiv:2302.13971, 2023.

https://github.com/tatsu-lab/stanford_alpaca


224 Bibliography

Geofrey G Towell, Jude W Shavlik, Michiel O Noordewier, et al. Refinement
of approximate domain theories by knowledge-based neural networks. In
Proc. AAAI Conf. on Artificial Intelligence, volume 861866, pages 861–866,
Boston, Massachusetts, USA, 1990.

Ankit Vani, Max Schwarzer, Yuchen Lu, Eeshan Dhekane, and Aaron C.
Courville. Iterated learning for emergent systematicity in VQA. In Int. Conf.
on Learning Representations (ICLR), Virtual only, May 2021.

Vladimir Vapnik. Statistical learning theory. Wiley, April 1998.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proc. Advances in Neural Information Processing Systems (NIPS),
pages 5998–6008, Long Beach, CA, USA, December 2017.

Petar Velickovic and Charles Blundell. Neural algorithmic reasoning. Patterns,
2(7), 2021.

Petar Velickovic, Rex Ying, Matilde Padovano, Raia Hadsell, and Charles
Blundell. Neural execution of graph algorithms. In Int. Conf. on Learning
Representations (ICLR), Virtual only, April 2020.

Chr. von der Malsburg. Self-organization of orientation sensitive cells in the
striate cortex. Kybernetik, 14:85–100, 1973.

Bailin Wang, Mirella Lapata, and Ivan Titov. Structured reordering for modeling
latent alignments in sequence transduction. In Proc. Advances in Neural
Information Processing Systems (NeurIPS), volume 34, Virtual only, 2021.

Peter C Wason. Reasoning about a rule. Quarterly journal of experimental
psychology, 20(3):273–281, 1968.

Chihiro Watanabe. Interpreting layered neural networks via hierarchical
modular representation. In International Conference on Neural Information
Processing, pages 376–388, 2019.

Chihiro Watanabe, Kaoru Hiramatsu, and Kunio Kashino. Modular
representation of layered neural networks. Neural Networks, 97:62–73,
2018.



225 Bibliography

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,
and Denny Zhou. Chain of thought prompting elicits reasoning in large
language models. Preprint arXiv:2201.11903, 2022.

Gail Weiss. https://twitter.com/gail_w/status/1600646811508772866,
2022.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like Transformers. In
Proc. Int. Conf. on Machine Learning (ICML), pages 11080–11090, Virtual
only, July 2021.

Pia Weißenhorn, Yuekun Yao, Lucia Donatelli, and Alexander Koller.
Compositional generalization requires compositional parsers. Preprint
arXiv:2202.11937, 2022.

Joseph Weizenbaum. ELIZA—a computer program for the study of natural
language communication between man and machine. Communications of
the ACM, 9(1):36–45, 1966.

Paul Werbos. Applications of advances in nonlinear sensitivity analysis.
System Modeling and Optimization, pages 762–770, 1982.

Jason Weston, Antoine Bordes, Sumit Chopra, and Tomás Mikolov. Towards
AI-complete question answering: A set of prerequisite toy tasks. In Yoshua
Bengio and Yann LeCun, editors, Int. Conf. on Learning Representations
(ICLR), San Juan, Puerto Rico, May 2016.

Alfred North Whitehead. Symbolism: Its meaning and effect. Journal of
Philosophical Studies, 3(12), 1928.

Ronald J. Williams and David Zipser. A learning algorithm for continually
running fully recurrent neural networks. Neural Computation, 1(2):
270–280, 1989.

Zhaofeng Wu, Linlu Qiu, Alexis Ross, Ekin Akyürek, Boyuan Chen, Bailin
Wang, Najoung Kim, Jacob Andreas, and Yoon Kim. Reasoning or reciting?
exploring the capabilities and limitations of language models through
counterfactual tasks. Preprint arXiv:2307.02477, 2023.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing,
Huishuai Zhang, Yanyan Lan, Liwei Wang, and Tie-Yan Liu. On layer
normalization in the transformer architecture. In Proc. Int. Conf. on Machine
Learning (ICML), volume 119, pages 10524–10533, Virtual Only, July 2020.

https://twitter.com/gail_w/status/1600646811508772866


226 Bibliography

Yunyang Xiong, Zhanpeng Zeng, Rudrasis Chakraborty, Mingxing Tan, Glenn
Fung, Yin Li, and Vikas Singh. Nyströmformer: A Nyström-based algorithm
for approximating self-attention. In Proc. AAAI Conf. on Artificial
Intelligence, pages 14138–14148, Virtual only, February 2021.

Yujun Yan, Kevin Swersky, Danai Koutra, Parthasarathy Ranganathan, and
Milad Hashemi. Neural execution engines: Learning to execute subroutines.
In Proc. Advances in Neural Information Processing Systems (NeurIPS),
December 2020.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement
learning with soft modularization. In Proc. Advances in Neural Information
Processing Systems (NeurIPS), Virtual Only, December 2020.

Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8BERT:
quantized 8bit BERT. In Workshop on Energy Efficient Machine Learning
and Cognitive Computing - NeurIPS, Vancouver, Canada, December 2019.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. In Int. Conf. on
Learning Representations (ICLR), San Diego, USA, May 2015.

Biao Zhang, Ivan Titov, and Rico Sennrich. Improving deep transformer with
depth-scaled initialization and merged attention. In Proc. Conf. on Empirical
Methods in Natural Language Processing and Int.Joint Conf. on Natural
Language Processing (EMNLP-IJCNLP), pages 898–909, Hong Kong, China,
November 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C. Mozer, and Yoram
Singer. Identity crisis: Memorization and generalization under extreme
overparameterization. In Int. Conf. on Learning Representations (ICLR),
Virtual Only, April 2020.

Dinghuai Zhang, Kartik Ahuja, Yilun Xu, Yisen Wang, and Aaron C. Courville.
Can subnetwork structure be the key to out-of-distribution generalization? In
Proc. Int. Conf. on Machine Learning (ICML), Virtual only, July 2021.

Hao Zheng and Mirella Lapata. Disentangled sequence to sequence learning
for compositional generalization. In Proc. Association for Computational
Linguistics (ACL), Dublin, Ireland, May 2022.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing
lottery tickets: Zeros, signs, and the supermask. In Proc. Advances in Neural



227 Bibliography

Information Processing Systems (NeurIPS), pages 3592–3602, Vancouver,
BC, Canada, 2019.

Chen Zhu, Renkun Ni, Zheng Xu, Kezhi Kong, W Ronny Huang, and Tom
Goldstein. Gradinit: Learning to initialize neural networks for stable and
efficient training. Preprint arXiv:2102.08098, 2021.


	Contents
	Introduction
	Systematic Generalization
	Characterizing Systematic Generalization

	The Difficulty
	Learning More Algorithmically
	The Memory Architecture of Modern Neural Networks
	The Need for Sequential Computation
	Breaking Down the Problem in Subproblems

	Systematic Generalization in the Age of Large Language Models
	Related Concepts
	Related Work Overview

	Improving Differentiable Neural Computers
	Brief Overview of DNC
	Method
	Experiments
	The Effect of Modifications
	bAbI Experiments

	Conclusion

	Inspecting the Implicit Modularity of Neural Networks
	Discovering Modules via Weight-Level Introspection
	Analyzing Fundamental Properties of Modules
	Addition/Multiplication Experiments
	Double-Addition Experiments
	Transfer Learning Experiments
	A Potential Explanation for Lack of Weight Sharing

	Analyzing Systematic Generalization on Algorithmic Tasks
	Analyzing Convolutional Neural Networks
	Related Work
	Conclusion

	Improving the Systematic Generalization of Transformers
	Datasets and Model Architectures for Systematic Generalization
	Datasets
	Model Architectures

	Improving Transformers on Systematic Generalization
	Addressing the EOS Decision Problem with Relative Positional Embedding
	Model Selection Should Be Done Carefully
	Large Impacts of Embedding Scaling

	Results Across Different Datasets
	SCAN
	CFQ
	PCFG
	COGS
	Mathematics Dataset

	Related Work
	Conclusion

	Achieving Length Generalization with Transformers
	Improving Transformers for Learning Adaptive Control Flow
	Copy Gate: Learning to Skip Operations (Vertical Flow)
	Geometric Attention: Learning to Attend to the Closest Match (Horizontal Flow)

	Experiments
	Compositional Table Lookup
	Simple Arithmetic
	ListOps

	Analysis
	Discussion
	Related Work
	Conclusion

	Inspecting Systematicity of Neural Networks
	Original CTL
	Extensions for Systematicity: CTL++
	Results
	Results on Variants `A' and `R'
	Results of Staged Variant `S'

	Limitations
	Conclusion

	Accelerating Transformer MLP Layers: a Path Towards Scalable NDRs
	Background
	Approximating 2-layer MLPs
	Top-K Activation Function
	Product-Key Memories (PKMs)
	Mixture of Experts (MoE)

	Existing MoE Variants
	Improving Mixture of Experts
	Experiments
	Top-K
	Product-Key Memory (PKM)
	Mixture of Experts (MoE)

	Limitations
	Conclusion

	Conclusion and Future Work
	Future Directions

	Further Details on Improving Differentiable Neural Computers
	Implementation Details
	Hyperparameters for the Experiments

	Additional Details for Inspecting the Implicit Modularity of Neural Networks
	Derivations
	From Gumbel-Softmax to Gumbel-Sigmoid
	Straight-Through Estimator
	The Expected Value of the Samples
	Choosing the Temperature

	Additional Discussion
	Stability of the Masks
	Does Masking Change the Performed Operation?
	Choosing Target Functionality
	Is Attention the Solution?
	Explicitly Modular Networks

	Additional Results and Experimental Details
	Sanity Checking the Mask Discovery Process
	Common Hyperparameter Choices
	Choosing the Regularization Hyperparameter
	Addition/Multiplication Experiments
	Double Addition Experiments
	Transfer Learning Experiments
	Experiments on Algorithmic Tasks
	CNN Experiments on CIFAR10


	Additional Details on Improving the Systematic Generalization of Transformers
	Evaluation Metrics
	Hyperparameters
	Relative Positional Embedding
	Embedding Scaling
	Analyzing the Positively Correlated Loss and Accuracy
	Additional Results

	Additional Details for Achieving Length Generalization with Transformers
	Ablations
	Details of Attention with Combined Absolute/Relative Positional Encoding
	Implementation Details
	Choosing the number of layers
	Dataset Details
	Model Details

	Additional Analysis
	Compositional Table Lookup
	ListOps


	More Details on Inspecting Systematicity of Neural Networks
	Experimental Details
	Modified NDR architecture
	Hyperparameters

	More Analyses and Plots
	Quantitative Analysis of Incompatibility
	Representative Cosine Similarities


	Additional Details of Accelerating Transformer MLP Layers: a Path Towards Scalable NDRs
	Further Details and Analyses
	Definition of normalised Top-K
	Measuring the Number of Active Channels in 
	More Details and Results on PKM
	Further Analyses of Our -MoE
	More on Resource Efficiency

	Implementation Details
	A Few Words on the CUDA Kernel
	Additional Results on MoEs


	Bibliography

